
Dense Point Cloud Prediction from a Single RGB Image

Kevin Katzkowski
kevin.katzkowski@tum.de

Kartik Bali
Kartik.Bali@tum.de

Shichen Hu
shichen.hu@tum.de

Abstract

As 3D data is not abundantly available, a method that
generates high-quality point clouds would be beneficial for
many data-driven downstream tasks like shape classifica-
tion or segmentation. Existing methods like PSGN construct
a coarse point cloud given a single RGB image as input, but
fail to capture fine-grained details. To address this problem,
we propose a two-stage reconstruction pipeline that takes a
single RGB image of an 3D object as input and predicts
a high-quality point cloud representing the shape. Specifi-
cally, we first use a PSGN to predict a coarse point cloud
from an input image and then apply a folding-based decoder
to obtain a dense version with 16,384 points. In experi-
ments, our approach shows strong performance for 3D re-
construction and improves the quality of point clouds over
the baseline.

1. Introduction

Ever since the ground-breaking works of PointNet [10]
and PointNet++ [11], point clouds as 3D representations
have been increasingly attracting attention due to their sim-
plicity, efficiency and ability to capture raw sensor data.
Still, one of the open challenges in the research community
is how to generate point cloud data at scale, such that it can
be used for data-driven downstream tasks like classification
and segmentation.

Given this challenge, [2] propose a Point Set Generation
Network (PSGN) to construct a point cloud from a single
RGB image, enabling 3D data synthesis at scale as high-
resolution RGB images are abundantly available. However,
the drawback is that the generated point cloud is coarse in
resolution and fails to capture fine-grained details, which
would be desirable for a 3D data representation.

Inspired by the recent adaptation of FoldingNet [13] in
point cloud completion models like PCN [15] and PoinTr
[14], we propose an approach that improves upon PSGN.
First, we use a PSGN to generate a sparse point cloud given
a single RGB input image. Then, a shared folding-based
decoder is applied to densify the coarse output. As a result,
a dense high-quality point cloud is generated. Our contri-

butions can be summarized as following:

• We re-implement three variants of PSGN and examine
them quantitatively and qualitatively.

• We propose a two-stage dense point cloud prediction
pipeline which combines PSGN with a folding-based
decoder and produces a high-quality point cloud from
a single RGB image.

2. Related Work
Reconstructing the 3D shape of objects from a single

RGB image is an ill-posed problem. Numerous differ-
ent approaches have been developed to tackle the problem
[2, 3, 6, 9]. Most proposed deep neural networks focus
on using regular grid structures like voxels and extending
2D convolutions to 3D space. However, these volumetric
representation-based methods are very inefficient, as they
require cubic growth in compute and memory, while only
containing relevant information near the object’s surface.
While several solutions reducing the computational effort
have been presented [4, 12], methods that directly operate
on the surface in form of irregular point clouds have proven
to be more memory-efficient.

In contrast to volumetric representations which use con-
volutions as the de-facto operation, point cloud representa-
tions utilize fully-connected layers due to the missing grid
structure. Points can be represented as sets by N × 3 ma-
trices [2, 3, 9], 3-channel grids in the form of H ×W × 3
where each grid location encodes a point [2, 7], or as depth
maps [6, 16].

Based on the point set representation, [9] use an autoen-
coder to learn a shape embedding and then learn a mapping
from 2D images to the embeddings. [2] combine the point
set and grid representation to generate point clouds from
a single RGB image. They use an encoder to obtain a la-
tent representation of the input image and then separately
predict a coarse point set as well as a 3-channel point grid.
Both representations are then fused to obtain the final point
cloud, which is very coarse as it only consists of N = 1024
points.

Other approaches try to predict more detailed and dense
point clouds by exploiting hierarchical learning. [3] applies
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Figure 1. Our proposed two-stage pipeline for dense point cloud prediction from a single RGB input image.

1D convolutions to an ordered point cloud and predicts a
dense point cloud by extracting local and global features at
three resolutions. Using depth maps generated by a CNN
from multiple pre-determined viewpoints using a single im-
age only, [6] proposes a Grid Deformation Unit to predict a
deformed depth map per viewpoint. With back-projection
and viewpoint fusion, one dense point cloud is obtained
from the different depth maps.

[13] uses a graph-based encoder to extract local and
global features, and combines it with a novel folding-
based decoder. The decoder implements a folding operation
which deforms a 2D grid onto the object’s surface to achieve
higher-quality point cloud reconstructions. The approach
can be used for point cloud completion, as in [15]. They
propose an autoencoder to predict a dense, complete repre-
sentation of a partial input point cloud. Similarly, [16] first
predicts a depth map from a single RGB image, then uses
it to calculate a partial point cloud based on the camera ge-
ometry and lastly predicts the full, dense point cloud with a
folding-based encoder. [8] also predicts a coarse point cloud
first, and then uses global and local features extracted at hi-
erarchically increasing resolutions to obtain a dense point
cloud.

Our proposed approach builds upon PSGN and combines
it with a folding-based decoder to predict a dense point
cloud from a single input image.

3. Method
Our method comprises two stages. In the first

stage, a variant of PSGN generates a coarse point cloud
{(xi, yi, zi)}Ni given a single RGB image of an object. In
the second stage, we apply a folding-based decoder to the
coarse point cloud and the global feature vector to generate
a denser point cloud.

3.1. Coarse Point Cloud Generation

To generate a coarse point cloud from a single RGB im-
age of an object, we follow the architectures presented in
[2]. We explore three kinds of PSGN architectures, namely
Vanilla, Two-Branch and Hourglass (see Figure 2).

In the Vanilla architecture, the predictor consists of fully-
connected (FC) layers and generates 1024 points. In the
Two-Branch and Hourglass versions, we use a predictor net-
work consisting of an FC branch and a parallel deconvolu-
tional branch. They generate 256 points and a grid of 768
points respectively. Moreover, skip connections are used
to enhance the information flow between the encoder and
the predictor. The output of both branches is concatenated
to form the final point cloud of 1024 points. The Hour-
glass network increases the depth of the network and uti-
lizes more skip connections compared to the Two-Branch
network, thus resulting in more representational power.

3.2. Folding Operation

In the second stage, we apply a folding operation to the
coarse point cloud. We concatenate the point cloud with the
global image feature vector extracted by the image encoder
of PSGN and a uniform 2D grid of 4 × 4 points, which is
then passed through a 3-layer MLP. This folding process
deforms the 2D grid such that it approximates the local ge-
ometry around each point. This deformation of the 4 × 4
grid enables capturing the fine-grained details in the local
neighborhood, while the coarse point cloud and the global
image features encode the global shape structure. The out-
put of the folding operation is added to the coordinate of
each coarse point cloud to obtain the final dense output.

3.3. Loss and Evaluation Metric

Since point clouds are unordered, the loss function needs
to be permutation invariant. Two popular losses for point
cloud comparison are Chamfer distance (CD) and Earth
Mover’s distance (EMD). We use the CD loss, as it uti-
lizes KD-trees to achieve a computational complexity of
O(log(n)), which is significantly faster than EMD (O(n2)).

We define CD loss (L2) between two point sets S1, S2
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Figure 2. Overview of the three PSGN architectures, namely Vanilla, Two-Branch and Hourglass. Image taken from [2].

as:

CD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||22

+
1

|S2|
∑
x∈S2

min
y∈S1

||x− y||22
(1)

To evaluate our method, we use Chamfer distance (L1),
which is defined analogously to CD (L2), but replaces
squared L2 distance with L1 distance.

4. Training Details

To train our model, we use the shapes from the ShapeNet
dataset [1] and the corresponding images of size 192× 256
that were obtained by rendering different 2D views of the
shapes. Specifically, we use a subset of the processed data
provided by [2], which contains about 32,000 shapes with
rendered images across all object categories of ShapeNet.
The data split is set as 80/10/10 for training, validation and
testing. During each training iteration, we compute the loss
using 1024 points randomly sampled from the ground truth
point cloud, which contains 16,384 points.

We implement our pipeline using PyTorch. For training
our PSGN implementations, we use a batch size 64 paired
with the Adam optimizer [5], with a learning rate of 0.0001
and a L2 weight decay factor of 0.000001. We train all
networks until convergence using early stopping with a pa-
tience of 20. For training the folding-based decoder, we
change the batch size to 16 and use a learning rate of 0.0003.

5. Results

We evaluate the performance of the implemented meth-
ods both quantitatively and qualitatively on a test set, which
consists of 3198 images and their corresponding ground
truth point clouds. Specifically, we evaluate the different
PSGN architectures and our two-stage prediction pipeline
that additionally applies the folding-based decoder.

5.1. Quantitative Results

5.1.1 Coarse Point Cloud Generation

We compare the implemented PSGN variations Vanilla,
Two-Branch and Hourglass using Chamfer Distance (L1).
A comparison of the results is in Table 1.

Model Chamfer Distance (L1)

Vanilla PSGN (ours) 0.0765
Two-Branch PSGN (ours) 0.0743
Hourglass PSGN (ours) 0.0737

Table 1. Comparison of different PSGN architectures for coarse
point cloud generation.

In our experiments, Hourglass PSGN produces the best
result, while Vanilla PSGN produces a worse result than the
other two models. The validation curves are recorded in
Figure 3.
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Figure 3. Chamfer distance (L1) for coarse point cloud prediction
using different PSGN architectures, namely Vanilla (pink), Two-
Branch (grey) and Hourglass (green).

5.1.2 Dense Point Cloud Generation

We further evaluate the results when applying our full
pipeline to predict a dense point cloud. Instead of produc-
ing 1024 points, the dense output contains 16,384 points.
A comparison of the results is in Table 2 and the validation
curves are in Figure 4.

Model Chamfer Distance (L1)

Hourglass PSGN (Coarse) 0.0737

Vanilla PSGN + Folding 0.0556
Two-Branch PSGN + Folding 0.0549
Hourglass PSGN + Folding 0.0544

Table 2. Dense point cloud prediction using our proposed method
with different PSGN architectures, compared to coarse predicting
using Hourglass PSGN.

Figure 4. Chamfer distance (L1) for dense point cloud prediction
using the folding-based decoder, pairs with Vanilla (blue), Two-
Branch (red) and Hourglass PSGNs (pink)’s and compared to the
coarse prediction of Hourglass PSGN (orange).

From our experiments, all variants of PSGN produce rea-

sonably better results when the folding-based decoder is ap-
plied. Moreover, the Chamfer distance values for dense
prediction are significantly lower than for the coarse pre-
dictions, as shown in 4.

5.2. Qualitative Results

The qualitative evaluation of Vanilla, Two-Branch and
Hourglass PSGNs are recorded in Figure 5 in the supple-
mentary material. From the visualization, we conclude that
all PSGNs implemented have the capability to capture ge-
ometric information from the input images and are able to
generalize to unseen inputs as well. Moreover, Hourglass
PSGN produces slightly better results than the other two
variants, which matches the quantitative evaluation in Sec-
tion 5.1.

We also provide the qualitative results for dense point
cloud prediction in Figure 6. From the visualization, we
can conclude that the folding-based decoder is able to ap-
proximate the local geometry by deforming the input 4× 4
grid.

6. Conclusion
In this work, we propose a two-stage pipeline for dense

point cloud construction from a single RGB image. We
quantitatively and qualitatively show that our method is
able to produce dense, high-quality point clouds and out-
performs PSGN. However, our proposed approach still
leaves room for improvements, as it tends to predict over-
smoothed local geometry. Future work can focus on tack-
ling this problem, e.g. by using more folding operations in
order to hierarchically increase the resolution of the point
cloud in multiple steps. Finally, we hypothesize that re-
training with the full ShapeNet dataset will lead to perfor-
mance boosts.
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Supplementary Material
A. Visualizations for Coarse Point Cloud Prediction

Figure 5. Qualitative results of various PSGN models.
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B. Visualizations for Dense Point Cloud Prediction

Figure 6. Qualitative results of dense point cloud prediction.
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