
TUM Data Innovation Lab

Munich Data Science Institute (MDSI)

Technical University of Munich

&

TUM Professorship of Data Science in Physics
&

Chair of Aerodynamics and Fluid Dynamics

Final report of project:

ADOPT: Topology Optimization using

Reinforcement Learning in JAX-FEM

Authors Eray Yildiz, Ioan Craciun and Kartik Bali
Mentors Prof. Dr. Lukas Heinrich and Msc. Ludger Paehler
Project Lead Dr. Ricardo Acevedo Cabra (MDSI)
Supervisor Prof. Dr. Massimo Fornasier (MDSI)

Jul 2023

1

Abstract

With the advancements in machine learning algorithms and increased computational ef-
ficiencies, engineers now have access to new capabilities and tools that can be applied to
engineering design. One category of such tools are machine learning (ML) models which
can approximate complex functions and make them useful for various tasks in the engi-
neering design workflow. This paper explores the use of reinforcement learning (RL), a
subset of machine learning, to automate the designing of 2D discretized topologies. RL
agents are trained to complete a task by accumulating experiences in an interactive en-
vironment. In this proposed environment, the RL agent can make sequential decisions
to design a topology by removing elements to satisfy compliance minimization objectives
best. After each decision, the agent receives feedback by evaluating how well the current
topology satisfies the design objectives. This report explains a proof of concept study
performed based on “Deep reinforcement learning for engineering design through topol-
ogy optimization of elementally discretized design domains”, which aims to train an RL
agent that performs described 2D discrete topology optimization scenarios similarly or
better than traditional gradient-based topology optimization methods. For comparison,
the method of moving asymptotes (MMA) is used as a gradient-based optimizer in this
study.

CONTENTS 2

Contents

Abstract 1

1 Introduction 4
1.1 Problem definition and goals of the project 4
1.2 State of the art approaches and algorithms in TO 5

2 Structure of the paper 6

3 Background 6
3.1 Reinforcement Learning . 6

3.1.1 Intuitive explanation . 7
3.1.2 Q-Learning . 7

3.2 Finite Element Method . 9
3.3 Topology Optimisation . 9
3.4 Methods of Moving Asymptotes (MMA) 10

4 Methods 10
4.1 Related Work . 11
4.2 FEM Framework . 11

4.2.1 JAX-FEM . 11
4.3 RL Framework . 12

4.3.1 State space . 12
4.3.2 Action space . 13
4.3.3 Reward . 14
4.3.4 Training . 14
4.3.5 Testing . 15
4.3.6 DL Architecture . 17

5 Implementation 17
5.1 fem model.py . 17
5.2 problem.py . 18
5.3 env.py . 19
5.4 optimizer.py . 21
5.5 MMA implementation . 23

6 Evaluation 23

7 Results 24
7.1 Qualitative assessment . 25
7.2 Quantitative Assessment . 25

8 Conclusion 26

9 Future Work 27

CONTENTS 3

A Project Code 30
A.1 Code of problem.py . 30
A.2 Code of fem model.py . 43
A.3 Code of env.py . 48
A.4 Code of optimizer.py . 53
A.5 Illustration of an entire training episode 58

1 INTRODUCTION 4

1 Introduction

1.1 Problem definition and goals of the project

Machine learning algorithms have made significant advancements in recent years and have
become widely used in various industries and applications, including engineering design
processes such as topology optimization (TO). Topology optimization is a computational
design methodology in engineering that aims to determine the optimal distribution of
material within a given design domain, subject to specific performance and manufactur-
ing constraints. It employs mathematical and computational algorithms to systematically
explore and evaluate different material layouts or configurations by iteratively redistribut-
ing material or void regions, to minimize or maximize desired performance metrics, such
as load-bearing capacity, stiffness, or weight limitations. A topology optimization pro-
cess typically consists of two main steps. The first step involves discretizing the design
space into smaller elements and utilizing mathematical models, such as the finite element
method (FEM), to evaluate the structural behavior and performance of the design. The
second step includes an optimization algorithm that tries to improve the performance
of the design based on the FEM results of obtained topology after each design update
regarding the defined objectives and constraints. The output of a topology optimization
process is often a design that exhibits an optimal material layout, resulting in enhanced
structural efficiency, improved performance, or reduced material usage.
Gradient-based and evolutionary optimization algorithms are popular choices for topol-
ogy optimization problems. However, these optimizers have limitations in certain cases.
For example, gradient-based optimization tools require a relationship between the de-
sign parameters and the objective function(s) via gradient calculation to find the path
toward the optimal solution, but such gradients may not exist for complex systems. Ad-
ditionally, gradient-based algorithms are prone to get stuck in local minima or maxima
for non-convex problems which may be far away from the global optima. Evolutionary
algorithms (e.g., particle swarm, genetic algorithms, etc.) are preferred to overcome these
challenges. These methods can slowly push the candidate designs toward global optima
by sampling globally. Nevertheless, these techniques have a higher sample-complexity,
and hence require more samples of the model and exhibit substandard performance when
the quantity of design variables is substantial. At this point ML based optimization meth-
ods offer a potential solution to the mentioned traditional design optimization methods
by approximating the complex mapping between the input design and the best design
modification to fulfill objective and constraint requirements [30].
This report involves a proof of concept study focusing on design optimization tasks for
2D discretized topologies using Reinforcement Learning (RL) based on the paper titled
“Deep reinforcement learning for engineering design through topology optimization of
elementally discretized design domains” [4]. As an additional contribution, we make a
performance comparison between the applied RL algorithm and MMA algorithm on a
specific TO scenario.

1 INTRODUCTION 5

1.2 State of the art approaches and algorithms in TO

ML-based methods have gained popularity recently in TO applications in addition to clas-
sical gradient-based methods and genetic algorithms. Most ML methods used in solving
TO problems are structured on deep learning (DL) frameworks. DL-based methods are
commonly used because they provide modularity in design and are highly adaptable for
various tasks.
Figure 1 provides an overview of the state-of-the-art learning-based methods with their
training strategies and how they are applicable to TO applications. Supervised and
unsupervised learning are the most commonly considered strategies for fixed datasets,
while reinforcement learning is an experience-based approach, and is part of a different
class of algorithms. Transfer learning is another popular technique which can be used in
any of the aforementioned approaches.

Figure 1: An overview of the common ML-based learning strategies used in TO [26].

Supervised Learning is commonly applied in cases where iteration-free topology opti-
mization or efficient sensitivity approximations are desired, such as optimizing structures
based on boundary conditions and loads or evaluating structural designs using element
density values and computing displacement or strain energy density.

Unsupervised Learning is valuable for detecting underlying patterns without prede-
fined outputs, as the loss function drives the learning process. It is particularly advanta-
geous when multiple useful outputs exist for each input. However, this method requires
an appropriate function for measuring the quality of the output in order to select the best
output among all.

Reinforcement Learning (RL) is a branch of machine learning that enables an agent
to learn and perform tasks in an interactive environment through feedback and rewards.

2 STRUCTURE OF THE PAPER 6

It focuses on training the agent to find an optimal design that satisfies the constraints in
the design space.

Transfer Learning uses pre-trained models to improve performance on specific prob-
lems under different conditions or constraints. The success of this method depends on the
similarity of the initial task to the new task.

In the literature there are varied examples of machine learning approaches being used to
solve topology optimization scenarios, which differ both in the architecture of the learning
agent as well as in the exact problem they are trying to solve. Sosnovik et al. [21] solved
the topology optimization problem by using CNNs that are able to compare images of
incomplete topologies with target optimal topologies. Another CNN approach include the
one by Kollmann et al. [12], where by using deep neural networks the authors were able to
increase or decrease various physical constraints, by creating different unit cells designs.
The implementations do not always involve solving the whole problem. For example
Ulu et al. [23] use a trained model to successively predict lower dimensional topologies,
which are afterwards solved by a gradient-based method. Other approaches include data
generation with the help of moving morphable component method, that could be later
used for learning the designs (see Lei et al. [13]). This method includes solving a constraint
problem.
As we can see these problems resemble the TO problem partially or even totally. But, none
of them reach their goal with the help of reinforcement learning. However, reinforcement
learning has already been applied in different varied domains: from predicting protein
folding structures [16] or using deep R.L. for beating different computer games [20] until
implementations in the field of robotics [11] or medicine [6].

2 Structure of the paper

In Background we present the basic fundamentals of the concepts we are going to deal
throughout the project: e.g. topology optimization. Next, in Methods we will show
popular ways in which one can deal with the problems from the previous chapter: e.g.
FEA-based MMA for topology optimization. Implementation brings the rationale behind
the code that implements the methods. Evaluation and Results present the modality in
which we assess the quality of our product and the results, respectively.

3 Background

3.1 Reinforcement Learning

We are going to begin by presenting the theoretical fundamentals behind reinforcement
learning, starting with a basic intuitive description of it. For this, we are going to make
use of a simplified toy example where the lower part of a pole is attached to a hinge on
cart, which can freely move from left to right. The scope of this scenario is to keep the
pole in a vertical stance. Following this we will continue with proper definitions that
define the goals of this type of machine learning.

3 BACKGROUND 7

3.1.1 Intuitive explanation

Reinforcement learning is a machine learning paradigm in which an agent learns to interact
with a predefined environment according to the previous agent’s interactions. Usually one
can distinguish the following 5 components of a reinforcement learning problem:

• Environment: the world in which the learning takes place. In our example this would
be the cart and the pole. These objects contain attributes such as the position of
the cart and the angle at which the pole is currently at.

• Agent: the entity which interacts with its environment with the goal of maximising
its reward function. The agent of the toy example is the cart which can move from
side to side in order to keep the pole steady.

• Actions: every possible action that an agent can take in order to influence its
environment. In our simplified example, this are the left and right commands given
to the cart, which in turn will influence the position of the pole as well.

• States: the agent action renders the environment in different conditions. For exam-
ple, by choosing to move the cart to the left, we will influence the position of the
cart, but also rotate the pole to the right due to inertia.

• Goal and Reward function: The problem is defined by a goal, which in turn can be
quantified by a reward function. In our toy example the goal is to be able to keep
the pole steady in a vertical stance. The reward could be a function that return
positive values the closer we are getting the pole to a stable state and negative
values when the pole seems to get unstable. The main goal of the agent is to learn
(after numerous repeated experiences) a productive policy. The policy is a mapping
between the current state and an action i.e. given the current state which is the
action that will reward the agent the highest amount in the long term.

3.1.2 Q-Learning

Having covered the intuitive meaning behind reinforcement learning in the last part, we
are now going to explain the way in which the learning is done in a thorough manner.
In the following we are going to reproduce explanations from [18] by Minh et al. In this
paper, the authors make use of an environment where they can simulate simple old Atari
games, where they realize an agent that is able to learn to use the controls in such a way
that after the training is over, it is able to apply a sequence of control that result in high
scores.
In the following we are going to denote the environment of the agent as E . The action
space is formalized as

A = 1, ..., K (1)

The agent does not observe complex data such as for example the Atari emulator internals,
but uses a set of observations instead. In the case of [18] these are images represented as
vectors xt ∈ Rd, where t is the timestep of the emulator and xt represents the changes
according to the actions taken by the agent. To store state representation, and store

3 BACKGROUND 8

successive actions, and observation in chronological order, the authors create the following
state representation

st = x1, a1, x2, ..., at−1, xt (2)

Performing an action at when we are observing xt will not only determine the new state
xt+1, but also a reward rt whose goodness will be decided by a separate reward function.
When an agent is performing an action it does not need to think only about the current
reward, but also about the potential future rewards. In this way one can make sure that
the agent will not be deceived by instantaneous large rewards, only to reach a dead end
afterwards. For this, a cumulative discounted reward at time t is defined as

Rt =
T∑

t′=t

γt′−trt′ , (3)

where γ represents the discount factor (which in practice is usually set to 0.9) and T is
the final timestep. Next, an optimal-value action function which returns the maximal
return possible after observing the state s and performing an action a is defined:

Q∗(s, a) = maxπE[Rt|st = s, at = a, π, (4)

where π is the policy. The optimal action-value function follows an identity called the
Bellman equation, which allows us to rewrite the preceding value function as:

Q∗(s, a) = Es′∼E [r + γmaxa′Q
∗(s′, a′)|s, a] (5)

The intuitive meaning behind this formulation is that after following at we will achieve
the maximal reward only by following the action at+1 which maximizes the reward at
state st. Finally, the Bellman identity can then be rewritten as an iterative update:

Qi+1(s, a) = E[r + γmaxa′Q
∗(s′, a′)|s, a] (6)

. It can be proven that Qi → Q∗ as i → ∞. However, such limit approach is infea-
sible in practice. That is why, the usual workaround is to use a function approximator
Q(s, a; θ) ≈ Q∗(s, a). This function approximator tends to be constructed with the help
of a neural network with weights θ, which is usually referred to as a Q-Network. The com-
mon approach for finding a suited network is to define and minimize a loss function by
using stochastic gradient descent. The loss of the neural network when using the weights
θi at the i-th iteration is defined in the following way:

Li(θi) = Es, a ∼ ρ(·)[(yi −Q(s, a; θ)i)
2] (7)

where yi is the target for the i-th iteration and is defined as:

yi = Es′∼E [r + γmax
a′

Q(s′, a′; θi−1)|s, a] (8)

and ρ(·) is a distribution over sequences and actions. We can see, that in order to get the
target we are using a previous iteration of the DQN in order to be able to use the future
rewards. Finally, one obtains the following gradient:

∇θiLi(θi) = Es,a∼ρ(·);s′∼E [r + γmax
a′

Q(s′, a′; θi−1)−Q(s, a; θi))∇θiQ(s, a; θi)] (9)

Said approach has many degrees of freedom left such as:

3 BACKGROUND 9

• How do we perform the sampling for the mini-batches?

• How do we choose the next action in the best possible way?

We will develop these aspects in the latter part of this report.

3.2 Finite Element Method

FEM is a numerical method for finding approximate solutions to boundary value problems
for PDEs. The central concept of FEM is the discretization of the large continuous
problem with infinite degrees of freedom (DOF) into a problem with a finite number of
DOF using idealized mathematical elements such as triangles, or hexagons to cover the
to-be-simulated domain. The simple equations that model cells are then assembled into
a larger system of equations that models the entire problem. The finite element method
then uses techniques based on the calculus of variations to approximate a solution by
minimizing an associated error function. As a last step of the FEM, displacements values
at each nodes of associated cells are computed and other physical properties of the system
are calculated based on these displacement values. A simplified workflow of FEM is given
in Figure 2 below.

Figure 2: Simplified flowchart of finite element method framework.

For the linear static structural problems the finite element method is based on the matrix
equation given in Equation 10. Here [K] is the stiffness matrix, {u} is the displacement
vector and P is the applied force.

[K]{u} = P (10)

The stiffness matrix is calculated based on the selected mesh type, assigned material
properties, boundary conditions and the performed discretization. Since applied loads are
also defined at the start, given equation is solved for obtaining an unknown displacement
field. Other derived quantities such as stress, strain, etc. can be computed using found
displacement field values.

3.3 Topology Optimisation

Rosinha et al. [19] define Topology Optimization as a mathematical method which spa-
tially optimizes the distribution of material within a defined domain, by fulfilling given
constraints previously established and minimizing a predefined cost function. For such an
optimization procedure, the three main elements are design variables, the cost function
and the constraints. We will expand upon these 3 constraints in the Methods section.
In practice, topology optimization is usually reduced to a discrete domain. In our case,
where we will only deal with two dimensional shapes, the design domain is reduced to a
grid-shaped form, with equal numbers of cells along both the horizontal and the vertical

4 METHODS 10

Figure 3: Initial Topology

direction. In the following we will reproduce the mathematical formulation of topology
optimization from [4]:

min
ρ
F

F (u(ρ), ρ) =

∫ Ω

Ω

f(u(ρ), ρ)dV

s.t. : G0 =

∫ Ω

Ω

ρdV − V0 ≤ 0

ρ(x) = 0 or 1,∀x ∈ Ω

(11)

The goal of optimization in 5 is to minimize F i.e. the compliance, which in turn will
result in maximizing the stiffness of the structure. The design domain is represented by Ω
and ρ represents a binary variable for each of the cells in the domain taking into account
the presence or absence of material at that location. The first constraint represents the
volume constraints G0 which ensures that the volume will always be under a certain
threshold V0.
Solving a topology optimization problem with the help of reinforcement learning is a
relatively unexplored idea. The most important example we have found is Brown et al.
in [4], which we have used as a guideline for our project. Other works that combine the
2 concepts together tend to opt for approaches where the domain is more simplified than
in our case, e.g. Hayashi and Ohsaki [8] where they solve a binary truss optimisation
problem. Here, the domain is discretized as a set of binary trusses, who have to be
removed in order to get to a minimal count.

3.4 Methods of Moving Asymptotes (MMA)

MMA is one of the most common algorithms to solve topology optimization problems.
The main concept of the MMA algorithm is replacing the difficult nonlinear, non-convex
optimization problem with a sequence of approximate convex subproblems that are easier
to solve. The main algorithm proposed and explained in [22],and a detailed explanation is
beyond our scope, since it’s directly adopted from [2] to create a result to demonstrate the
TO performance of a gradient-based method. Since JAX-FEM is a differentiable solver,
it allows required gradient computations for MMA.

4 Methods

As mentioned in section 1.1 briefly, a typical topology optimization process is an iterative
two step process. A topology optimization process begins with a predefined set of param-

4 METHODS 11

eters, including the design parameters for which the structure will be optimized. Then
in the first step, an FEM framework is used to evaluate design performance based on the
defined design parameters. In the second step, an optimizer is used to modify the design
parameters to advance the model performance regarding the set objectives and defined
constraints.
In this study, we perform topology optimization for a 2D solid structure using deep rein-
forcement learning. For the design evaluation we used JAX-FEM [29]. As an optimizer,
we develop a double deep q-learning (double DQN) agent to perform the optimal TO
using OpenAI-Gym to define the environment and Keras for the implementation of the
DQN [3, 5]. This section provides detailed explanations for our TO framework and its
components.

4.1 Related Work

In the recent years a tremendous amount of FEM numerical solvers have emerged which
boast of superior analysis accuracy at which they compute solutions or the range of prob-
lems that they can address [9]. Lately, however, there has been a surge in the use of
automatic differentiation and machine learning based solvers in the scientific community.
This is evident due to the fact that there exists an upper limit to accuracy when it comes
to numerical schemes no matter how high order the scheme is. Automatic differentia-
tion (AD) and ML frameworks compute gradients via the advent of chain rule and thus
compute absolute derivatives with machine order precision [7]. An example of the for-
mer approach can be seen in [1]. Due to the success of DL based approaches in pattern
recognition, Computer Vision and Language processing tasks, a lot of recent works now
focus on integrating ML frameworks into the solver for their AD capabilities and their
pattern recognition ability to simulate stochastic phenomenon [25], [14]. Apart from har-
nessing the power of AD, a lot of works have also resorted to exploring neural network
architectures for accelerating existing solvers [28] and using novel architectures to com-
pute solutions in material science [27], [10]. Our work aims to integrate Reinforcement
learning to solve TO using the already AD based JAX-FEM solver.

4.2 FEM Framework

4.2.1 JAX-FEM

JAX-FEM is an open-source, differentiable FEM library for design optimization con-
structed on top of Google JAX [2], a rising ML library focused on high-performance nu-
merical computation. JAX-FEM is written provides an accelerated framework for struc-
tural analysis. It is validated for several structural mechanics problems, including linear
elastic problems, by comparing the results obtained with the state-of-the-art FEM solvers
FEniCSx and Abaqus. This study uses JAX-FEM to create a structural linear elastic
design for TO, and evaluate the design performance after each optimization step. The
workflow in JAX-FEM is the same as in regular FEM software if the user wants to per-
form non-gradient optimization such as DQN. The workflow is explained in section 3.2,
and practical utilization of JAX-FEM will be described more detailed in section 5. An
illustration of a created 2D cantilever beam using JAX-FEM is given in Figure 4 below.

4 METHODS 12

Figure 4: Initial topology of the 2D cantilever beam. Here the red cells represent the
bounded cells, the green cell represents the loaded cell and the blue cells represent cells
that contain material. The numbers indicates the cell indices. Cell indices are ordered
with respect to the JAX-FEM logic. The reference coordinate system of JAX-FEM is
given in the right hand side of the figure.

4.3 RL Framework

In order to implement an RL-based optimizer for for the discretized TO problem, the
problem needs to be reformulated as a Markov Decision Process (MDP). MDPs are a
discrete-time stochastic decision-making process. They use a mathematical framework
to model the decision-making of a dynamic system in scenarios where the results are
taken either randomly or controlled by a decision-maker sequentially in time. An MDP is
built upon four elements, a state space (S), am action space (A), a transition probability
function (P), and a reward function (R). If a TO problem can be expressed in terms
of these elements, then the optimal TO design problem can be an MDP. For the MDP
formulation we created an environment that contains S, A, P and R definitions and a
DQN agent that interacts with the environment for optimal decision-making.
In the remainder of this subsection the environmental and agent related components of
the RL framework will be described in detail.

4.3.1 State space

The state space, denoted as S, encompasses the complete set of possible observations that
an agent can encounter during its interaction with the environment. The current obser-
vation of the agent depends on the current topology, boundary conditions, and loading
conditions. Each state space observation is constructed as arrays with dimensions N x N
x 3, where N denotes the number of cells along one dimension.
The state information about the current topology of the design can be represented by
the stress distribution on the current topology. The von Mises stress is a widely utilized
measurement in engineering design to describe the current stress state of an object. The
calculation of von Mises stress for each cell can be performed using equation 12, where σx,
σy and τxy are found using JAX-FEM. This information is encoded in the first channel of
the state observation matrix in the form of normalized inverse von Mises values calculated
using equation 13, where σVM,i represents the von Mises stress for cell with index i, and
σVMmax represents the highest valued von Mises stress among the cells in observation

4 METHODS 13

space. The normalization is performed in order to prevent unbounded stress values.

σVM =
√

σx
2 + σy

2 − σxσy + 3τxy (12)

σVMinv,i =

(
σVM,i

σVMmax

)−1

(13)

The second and third channels of the observation state matrix consist of the boolean
representations of the fixed and loaded elements in order. Fix and loaded elements are
assigned a value of 1, while the unfix and unloaded elements are assigned a value of 0.
An example of a simple 6x6x3 observation state matrix under a multi-loaded topology is
given in Figure 5 below.

Figure 5: Observation representation. (a) Topology with cell indices. (b) Channels of state
observation matrix in order. (c) State tensor used as input for DQN. (red = bounded
cells, green = loaded cell, blue = cells with assigned material.)

4.3.2 Action space

The action space refers to all the possible actions the agent can take at each time step.
In the context of our TO environment, an action corresponds to toggling a selected cell
from material to void by changing the material density, in other words, the elasticity of
the selected cell from 1 to 1e-4, since we assume that for this study, the elasticity of each

4 METHODS 14

cell equals to the assigned material density of each cell. The action space size for an N
x N topology environment is equal to N2. In our scenario, the action space is an array
that contains the index number of each cell in the topology. Some of the possible actions
are defined as illegal actions in the action space. These illegal actions include removing a
bounded, loaded, or previously voided cell or removing a cell that causes a singularity in
the topology as a result. Such actions are demonstrated in the Figure 6.

Figure 6: Illegal actions. (a) Removing voided (white), loaded (green), bounded (red)
cells. (b) Action results in non-singular body such as removing cell 26 for given example.

4.3.3 Reward

The reward formulation is motivated by encouraging the agent to take effective actions
that improve the design into the optimal design. For taking the desired actions, the agent
gains positive rewards, whereas for taking the illegal actions, it is penalized by negative
rewards. The agent always seeks to accumulate the most possible reward during the
episodes and tries to learn the best action sequence to achieve this goal. For this TO
problem, the proposed reward function is used in [4] as in equation 14. Here cs is the
initial strain energy of the solid block topology, ct is the strain energy of the current
topology at the time step, t, αt is the number of voided elements at timestep t, and N2

gives the total number of cell in the topology. This equation means that the agent is
assigned more reward if the topology exhibits minimal increases in strain energy after
each taken action while reducing volume fraction.

rt =

(
cs
ct

)2

+
(αt

N2

)2

(14)

4.3.4 Training

In this part we will describe the basic workflow of the DQN Agent while training. Firstly,
we initialize a solid 6x6 block of material which is discretized into 36 cells. Afterwards,
we randomly generate the Dirichlet conditions, which represents the points at which we
are fixing out structure. We do this for 2 cells, whose points are randomly selected. If
the 2 cells have no common edges we will choose 2 points for each cell, if they have a
common edge we will choose only one point for each cell and if one of the cell is a corner

4 METHODS 15

we will choose the point that represents one of the 4 corners of the structure. Next, we
are randomly choosing a cell which will contain the Neumann boundary condition i.e.
the cell where the force is applied. The direction (vertical, horizontal in or against the
positive coordinate of the axis) as well as its value are randomly sampled. It is worth
mentioning that in the debugging phase of this part we usually used fixed boundary and
force conditions in order to be able to track the progress of our implementation better.
Secondly, we use the FEA Implementation provided by JAX in order to calculate the
required quantities of the current configuration: inverse von Mises, displacement, strain
energy. By using the results of the FEA, we create the following 3x6x6 state matrix of
the current timestep t: the first dimension contains the normalized inverse von Mises,
the second one and the third dimensions are both binary matrices and contain the value
1 only where the cell is used for the Dirichlet boundary condition and the Neumann
conditions, respectively. However, due to time constraints we aimed at training our DQN
model for the configuration stated in 4. Thirdly, we choose a cell to be removed. This
decision can be computed in 2 different ways. The first procedure selects a cell at random,
while the second one makes use of the DQN model. The training procedure starts with
an empty memory buffer. This is why, in the beginning we are encouraging the use of
random actions, which we are calling exploratory, over actions that are recommended by
the DQN, which we name exploitative. Hence, we are introducing a new condition: the
memory buffer should have a given minimal length, on which the DQN has previously
trained in order for the DQN o be used. If this is not he case, we will use the exploratory
approach. However if the DQN was trained at least once we will use the aforementioned
greedy policy to decide if we are taking an exploratory or an exploitative approach. No
matter the approach, this step will return us the ID of a cell that has to be removed. If
the removal of the cell does not render a non-singular body, we calculate with the help of
JAX the new quantities for the given body. We can now enhance the memory by adding
a new element made of: the previous and current state, the action the model took (i.e.
the removed cell) and the reward that was achieved by this action. However, if the action
was illegal or if after the removal of the last cell the volume fraction has fallen under a
predetermined margin we consider this episode over. If the episode is not over, we will
repeat a cell removal step.
Finally, after the episode is over we retrain the main DQN model on a sampled batch from
the memory buffer. Moreover if the episode count has reached a certain limit (5000) we
end the training. However, if the episode number is also divisible through 100 we assign
the weights of the DQN model to the auxiliary model which we use for calculating the
targets.

4.3.5 Testing

Until now we have only trained our agent on a 6x6 scenario. What makes topology
optimization different from the usual tasks that are solved by reinforcement learning is
the action space and the consequences a single action has on the whole state space. When
we compare our scenario with other typical scenarios from reinforcement learning we can
see this difference better. We take for example the classic Atari game called Breakout or
the toy example we have talked about in 3. We see the the action space is very small
and it is represented only by actions such left or right. Now if we look at our case we

4 METHODS 16

Figure 7: Episodic training flowchart (adapted from [4])

will see that we theoretically have 6x6=36 actions i.e. we can remove any of the 36 cells.
We reduce this number to 33 by not considering the boundary conditions. Moreover, the
number keeps getting smaller with every step because we do not consider already removed
cells as viable action. However, in topology optimization removing a cell will have a direct
impact on every other subsequent step. This is not true for most of the reinforcement
learning scenarios. Take for example the cartpole example where the states can become
periodical. Our scenario cannot present such behaviour.
One of the our goals was to try implement the cell removal procedure for bigger scenarios
than 6x6, more specifically for a 24x24 scenario. However, this means an action space of
24x24=576. Running the DQN agent directly on this would prove infeasible as it would
become increasingly difficult to generalize on these dimensions. In order to solve this
problem, Brown et al. present in [4] a procedure called Progressive Refinement. The
procedure functions in the following way: it starts with a 6x6 solid block where the
boundary conditions are defined. Following this we apply the DQN in order to remove
the unnecessary cells, which will return us a new design. We upscale this new design to
12x12. After repeating the same procedure for the 12x12 and the 24x24 case we will get
an optimized design for the final dimensions.
In both the 12x12 and 24x24 scenarios we are not training the agent anymore and we
are only using the DQN model we have trained for the 6x6 case. Even though the in-
and output dimensions are different, the DQN will still function for these 2 cases thanks
to the convolutions ratio it has. Intuitively, the progressive Refinement procedure would
mean that a cell in the 6x6 scenario represents 4 cells in the 12x12 scenario and 16 cells in
the 24x24 scenario. This means that if we are performing the operations with a volume

5 IMPLEMENTATION 17

fraction goal given in the 24x24 space we have to redefine it in the 12x12 and 6x6 case
accordingly. Unfortunately, we were not able to test the Progressive Refinement due to
lack of time.

4.3.6 DL Architecture

In our case the task of the neural network is to return an array of shape 6x6 that represent
the approximated Q values. The Q value of a cell represents the expected Q value of the
former state in combination with the action of removing the respective cell.
We have chosen to replicate the DQN Model Architecture used by Brown et al. in [4]:

1 class _build_model(tf.keras.Model):

2 def __init__(self):

3 super().__init__()

4 self.conv = Sequential()

5 self.conv.add(Conv2D(16,(3,3),padding='same' ,activation='relu',

input_shape=state_size))↪→

6 self.conv.add(Conv2D(8,(3,3),padding='same',activation='relu'))

7 self.conv.add(Conv2D(4,(3,3),padding='same',activation='relu'))

8 self.conv.add(Conv2D(1,(3,3),padding='same', activation='relu'))

9 ...

Listing 1: DQN Model Architecture

5 Implementation

In Background we defined the basic concepts of our project such as reinforcement learning
and topology optimization. The following section 4 presented known solutions to these
concepts. In this section we are going to present how these solutions were implemented
into the project code.
Firstly, we are going to present the fem_model.py where we are creating jax methods for
our goals. Secondly, there is problem.py which contains the most important elements of
our simulation, that allow us to randomly create scenarios for the topology optimization
problem. Thirdly, we will present env.py, which will serve as an interface between our
DQN Agent and the jax environment. Lastly, we are going to present the way in which
the reinforcement learning is performed with the help of a DQN in optimizer.py.

5.1 fem model.py

This python file contains a class called Elasticity that uses inheritance from the FEM class
located in the JAX-FEM core module. This module performs main FEM calculations
in order to solve second-order elliptic PDE problems including linear elasticity as defined
in [29].
The Elasticity class is used for structural model definition. We used a linear elastic
model defined in the get_tensor_map_box method to perform the required stress calcu-
lations for the creation of the first channel of the observation state tensor that contains

5 IMPLEMENTATION 18

the normalized inverse von Mises stress values for each cell in the topology and the reward
function calculation.

5.2 problem.py

This python file contains a class called ProblemSetup. The class is used for setting up
the topology optimization problem. It inherits the Elasticity class that we mentioned
in the previous section.
Firstly, we set up the topology optimization problem. This class creates a discretization
of the topology based on the passed variables that define the desired discretization prop-
erties, such as the number of cells along the dimensions denoted as N, the total length
of the topology along each dimension denoted as L, the dim variable that defines the
dimensionality of the TO problem. Also, we hard-coded the element type as ’QUAD’
under the __init__ class to discretize the topology with homogeneous quadratic meshes.
Discretization is performed automatically under the __init__ method each time the class
is instantiated.
Secondly, this class has several methods to create randomized boundary conditions for TO
problem in the beginning of the each episode as it is described in the Training section.
This randomized selection process is applied according to the defined methodology by
Brown et al. [4]. select_bounded_and_loaded_cells method is used to select random
cells among the topology domain for imposing Dirichlet (fixation) and Neumann (load-
ing) boundary conditions. It uses the defined num_bounded_cell and num_loaded_cell

parameters and a helper method called _categorize_cells. The _categorize_cells

method categorizes the cells based on their locations in the topology and returns this
information, such as corner cells, edge cells, outer cells and inner cells. Based on this
information the bounded cells are randomly selected in order among the outer cells and
assigned to bounded_cell_inds variables. These cells are then removed during the ran-
dom loaded cell selection and loaded cells are selected randomly among the remaining
cells. Since the boundary conditions cannot be applied on the cells but on the nodes,
select_bounded_and_loaded_points method is used to select the corresponding nodes
around the selected cells to assign boundary conditions. After the corresponding node
selection, set_dirichlet_bc and set_neumann_bc methods are called to create proper
inputs for the boundary condition assignment in JAX-FEM. After creating the proper
inputs with the desired format, these inputs are passed to the problem_define method
to create an Elasticity instance as a last step of the randomized TO problem definition.
Thirdly, this class has some methods that are useful for training. One of them is called
problem_solve. This method takes the objective design parameter cell material density
array as an input and performs a one time-step forward simulation using the JAX-FEM
solver. This method is called in the training and testing at each step during the each
episode to perform state update based on the selected action using modified material
density array called rho. Another useful methods is create_state_space_tensor, which
creates the required observation state input described in State space for the DQN model
training.

1 def problem_solve(self, problem, rho: np.ndarray):

2 fwd_pred = ad_wrapper(problem, linear=True, use_petsc=True)

5 IMPLEMENTATION 19

3 rho = rho.reshape((-1,1))

4 return fwd_pred(rho)

Listing 2: problem solve method
update_density is an another method that automatically updates the material density
value for a selected cell. It is used to modify the material density array after each taken
action during training and testing. Also, positive reward calculation after each valid
action of the agent during the training is done by calling the positive_reward method.
Lastly, the illegality of each taken action is controlled by calling check_illegal method.
It performs the validity check based on the criteria described in the Action space section
and returns true if the termination criteria have been met; otherwise returns false.
Finally, the ProblemSetup class has some helper functions for array and matrix manipu-
lation. The _state_matrix_from_array method e.g. takes an array and converts it into
a matrix in the same order with JAX-FEM indexing logic. _state_array_from_matrix
on the other hand is used for performing the reverse operation. These methods are used
when we need to convert the operations in the JAX-FEM indexing logic and vice-versa.

5.3 env.py

For the environment creation, we chose to use the Gym package, which is a toolkit developed
for reinforcement learning research. It includes a diverse collection of pre-built scenarios
(called environments) and enables to create new custom environments with a common
interface.
A new environment can be constructed by creating a class that inherits from the gym.Env
class of OpenAI Gym. This created class has two main attributes called observation_space
and action_space, and three main methods called reset, step and render.
The observation_space and action_space attributes give the format of valid obser-
vations and actions in the environment. In our case these are the 3-dimensional matrix
containing the values of the FEM simulation along with the boundary and force conditions
and the 36 possible cells respectively.
Since the MDP is a sequential process, the reset method is called when the agent takes
an action that triggers termination criteria to automatically reset the environment to an
initial state, and returns the initial observations at the beginning of each episode. In this
way, we ensure that we start every episode with all the parameters reset.
The step method advances the dynamics of the environment by one timestep (see figure
13) when it is called. It contains strategic information that the agent follows during the
training and later in the testing phase. It takes an action as an input and returns a tuple
that contains the current_observation_state, the current_action, the reward that
is gained based on the taken current action, the next_observation_state as a result of
the taken action, and the termination information as a boolean whether the termination
criteria has been reached after taking the current action. In the following lines we present
snippets from the definition of step function, where one can see the interaction it has
with the jax model. The reader is advised to see the Code of env.py section for the whole
method.

1 def step(self, action): # action is the cell to be removed

2 #...

5 IMPLEMENTATION 20

3 if self.jax_model.check_illegal(self.rho_matrix, cell_to_be_removed,

self.current_state_tensor_check, self.nb_removed_cells,

self.max_num_step):

↪→

↪→

4 else:

5 #...Recompute the new von Mises values...

6 rho_vector, rho_matrix =

self.jax_model.update_density(self.rho_vector,

cell_to_be_removed)

↪→

↪→

7 self.rho1d = rho_vector.reshape((-1,1))

8 solution = self.jax_model.problem_solve(self.problem, rho_vector)

9 von_mises = self.problem.compute_von_mises_stress(solution)

10 #...Calculate the reward...

11 reward = self.jax_model.positive_reward(self.init_SE,

self.curr_SE, self.nb_removed_cells, self.size_x*self.size_y)↪→

12 #...Recompute the state tensor...

13 self.next_state_tensor_DQN, self.next_state_tensor_check=

self.jax_model.create_state_space_tensor(rho_vector,

von_mises, self.bounded_cells, self.loaded_cells)

↪→

↪→

14 #...

15 return self.current_state_tensor_DQN, action, reward,

self.next_state_tensor_DQN, terminated↪→

Listing 3: Step method
The render method is used for visualization of the action of the agents and the results
of the environment. This method is optional, and the absence of it does not affect the
learning performance of the agent. However, we have chosen 2 alternative ways to this.
The first visualization (see figure 8) mode we are using is the real-time one. We are
using the colorama package that allows us to color the ANSI characters in the terminal.
Whenever we are printing the current step we are printing additional details with it such
as: the reward we get from that step, the cell that was removed, the strain energy etc.
The color scheme we are using is the following: red for the boundary conditions, green for
the force location, blue for simple cells that are not yet removed and the removed cells
are white. Moreover we are also annotating these cells with their index in our matrix.

Figure 8: Visualisation modes

5 IMPLEMENTATION 21

Even though this type of visualization allows us to inspect the DQN Agent in real time, it
is not a good option for post-visualization or for storing old episodes. This is why we have
implemented a second type of visualization (see 8). This is an extension to the current
visualization function. Every time a new step is taken we create a plot which uses the
visualization matrix from the last paragraph along with a color map using the heatmap

method of the seaborn library. This newly created plot is saved as a .jpg in a special
folder for the current episode. After an illegal move was performed, and RL trajectory
subsequently terminated, we go through all the steps of the current episode and combine
them into a .gif in the correct chronological order. In this type of visualization we are
not using the indexing anymore.

5.4 optimizer.py

The DQN agent is created in the Python class. We used the Keras library to build the
CNN based DQN model, which takes state observation tensor as an input and returns the
possible best action as an output by learning the possible best policy for the TO problem
during training. The DQN agent class has three main methods called remember, train
and act and some attributes related to DL model, some to the TO environment and some
to the learning policy.
In the beginning of the file we define some variables whose value will remain constant
throughout our implementation, such as the dimensions of the body or the density of
the voided elements. We create an instance of our jax simulator by instantiating a
ProblemSetup object. After this we create the environment with which the DQN Agent
will interact by instantiating a TopOptEnv. Finally we create our neural network architec-
ture which we have presented earlier with the help of tf.keras. We also add an additional
post-processing step to the architecture, that rearranges the elements of the matrix in the
order we have presented in previous figures.
In the following part we are creating the DQNAgent’s class, the most important part of the
reinforcement learning paradigm. In the initialization of the agent we specify both the
state and action space size, these are useful in keeping track of their dimensions. Other
important attributes, whose values were fixed are:

• memory = deque(maxlen=30000): the data structure that stores tuples of past ex-
periences in the (state, action, reward, next_state, done) format. Through
the method remember(self, state, action, reward, next_state, done) the
agent is able to enhance it after taking a new action an observing the new state.

• gamma = 0.1: the value with which we are discounting the future experiences, its
role was already explained in Background.

• epsilon = 0.9: the initial value for epsilon, representing the probability of taking
a random action by the agent, i.e. not using the neural network.

• epsilon_decay = 3.5e-4: the decay factor for epsilon. After learning to ap-
proximate the outcomes of a new action, the epsilon is given the following value:
1 - episode_num * epsilon_decay. This ensures that with time, the agent will
use the Q-Network more often.

5 IMPLEMENTATION 22

• epsilon_min = 0.01 if epsilon falls below this value, it will be assigned this value.
In this way we ensure, that the agent will always test new actions, but not as often
as in the beginning.

• learning_rate = 2.5e-3 the value we are using for the gradient descent

Now we are going to describe the way in which the DQN Agent helps create a network
capable of predicting the best action according to the current state. In order to do this,
we will present the learning loop and explain every important method along the way.
We are going to simulate 5000 episodes. An episode is considered finished when the DQN
Agent is trying to perform an illegal action. When the Agent is using a random action all
the illegal actions with the exception of the non-singularity inducing ones are filtered out.
However, when using a Q-Network prediction every type of illegal action can be returned.
Each training loop begins by calling the reset function of the environment. This sets
the two dimensional body to its complete state and, if we are not hard-coding boundary-
and force-conditions, new locations for the fixed points and the force are also generated.
We set the done variable to False (it will be set to True when the agent will have taken
an illegal action. While the boolean does not change its value we are performing the
following steps:

1. action = agent.act(state): This method will return the action to be taken ac-
cording to the epsilon-policy. The epsilon policy chooses with probability epsilon

a random cell of the body (in this case the cells will already be filtered in order to
exclude the most illegal actions). However if the randomization results in a different
outcome, we will use the Q-Network in order to predict the new action. The network
will assign a Q-value for each of the cells and we are choosing the highest one.

2. Knowing what action we have to apply we will perform state, action, reward,

next_state, done = env.step(action) i.e. we simulate this action in the envi-
ronment and we also register the additional information.

3. We enhance the agent’s memory with the results of the current step through
agent.remember(state, action, reward,next_state, done)

After done becomes True we have completed the present episode. After the episode we
call the training function which we describe in the following paragraph. If the episode
number is higher than 0 and a multiple of 100 we set the weights of the auxiliary model
to the same weights as those of the main model. Moreover, at every 50th episode we are
saving the model’s weights in a .hdf5 format model snapshot.
After we are done with simulating the steps of an episode, the last remaining task
for this episode is learning the new transitions and their rewards, we do this through
agent.train(batch_size, episode_number). The first argument is used to sam-
ple a batch of samples of that size from the memory, while the second argument is
used only for decaying the epsilon. Due to the fact that every sample is formed
out of the state and its successor, the action, the reward and the finished state
we are creating the following variables which contain a list of each element type:
states, states_nxt, actions, rewards,

dones. In lines 3 and 4 from the code listing 4 we calculate the Q-values with the main

6 EVALUATION 23

model. In the following line we do the same for the next states with the auxiliary model.
As previously stated the auxiliary model uses old weights of the main model. Van Hasselt
et al. [24] suggest the use of the Double DQN which implies the existence of a second
model in order to reduce the overestimation from the main model. If the sample is a fin-
ished one we assign the q-value in that step the reward value, as an increase is no longer
possible. If however the batched step is not finished, we reinterpret the iterative Bellman
equation 6 where Q∗ is represented by the auxiliary model and Q by the main model.
After the discounted reward is calculated we call the .fit function of the Keras model.

1 def train(self, batch_size, episode_num):

2 ...

3 targets = onp.array(self.model(states))

4 targets_nxt = self.model(states_nxt)

5 targets_val = self.model_target(states_nxt)

6 for i in range(batch_size):

7 if dones[i]:

8 targets[i][actions[i]] = rewards[i]

9 else:

10 a_max = np.argmax(targets_nxt[i])

11 targets[i][actions[i]] = rewards[i] + self.gamma *

targets_val[i][a_max]↪→

12

13 self.model.fit(states, targets, epochs=1)

14 ...

Listing 4: Double DQN Training

5.5 MMA implementation

MMA implementation performed using MMA.py module in [2] after creating the same TO
problem for the RL training calling the required methods from problem.py. Also a volume
fraction variable vf is defined as a constraint to the MMA optimization that defines ratio
of the allowable remaining total material density after optimization to the total material
density in the initial topology.

6 Evaluation

In this section we describe the way in which we are assessing the quality of our predictions.
We will first introduce a qualitative method and afterwards a quantitative method.
Topology optimization is traditionally realized through analytical gradient-based meth-
ods. One of the possible implementations is the Method of Moving Asymptotes (MMA).
Due to the fact that this is only a qualitative assessment we have not created a metric
for this part. Instead we want to find out if our scenario is able to recreate the basic
geometry of an optimized topology. In the following section we will conduct an analysis
by comparing the 2 results: one from the gradient-based topolgy optimization and the
other one created by our reinforcement learning model.

7 RESULTS 24

The second modality in which we are testing the performance of our model is by assessing
the quality of the predictions. We will follow a metric similar to the one used by Minh
et al. [18] in their paper about Atari games. The first quantity that comes into one’s
mind when trying to characterize the goodness of a prediciton is the average reward per
episode. However, as Minh et al. state in their paper, the evolution of the reward can
be extermely noise. This is most probably because of the instantaneous nature of the
reward i.e. the reward changes between every consecutive steps. In order to solve this
issue, we are moving our attention to a cumulative metric, i.e. the Q-value function. We
will average the returned values by the Q-value functions during every episode (this only
happens when we are using the DQN Network for predictions). One needs to highlight
the fact that as the episode index increases we will also see more DQN calls inside an
episode, hence the values should become more stable.

7 Results

The Double DQN model was trained to optimize the topology given in 4. The initial
topology comprised of 6× 6 elements, with the fixed Dirichlet boundary conditions along
the left vertical and loaded at the bottom right as shown in 3. One of the main reasons
this task of topology optimization is difficult is because of the increased action space of
the system (33) and consequently the high number of possible states due to those actions.
It is critical that the hyperparameters are tuned to maximize the learning performance of
the agent. After exhaustive experimentation and careful tuning, the RL agent was able
to learn the removal of optimal elements from the topology which resulted in minimal
increases in strain energy at every step.
In the initial stages of development, the agent was having a hard time learning the strategy.
After exploring and revisiting various concepts in Double DQN based RL, we were able to
optimize the hyperparameters and in this process boost the performance of the learning
strategy significantly.
Contrary to popular Double DQN implementations which employ a discount factor γ
close to 1, in our instance it was possible for the agent to learn by focusing more on the
immediate rewards. Hence γ = 0.1 gave considerably better results than γ = 0.9, which is
primarily used for Double DQN based RL where it is to penalize near-term rewards, and
instead prioritize long-term future rewards, as commonly seen in reinforcement learning
applied to Atari games ([18]). This can be fairly easily understood by studying the
input inverse of the von Mises state given to the network (see figure 9). The value of
the normalized inverse von Mises stress at every step is the highest where removing the
element is most optimal, since the highest inverse von Mises stress corresponds to the
least loaded cell in the topology at any time. In the figure 9 its evident that the first
element to remove is element number 35 since it has highest normalized inverse von Mises
stress value equal to 1.

7 RESULTS 25


0.02308 0.03743 0.06002 0.09509 0.19225 1.
0.14993 0.05408 0.05367 0.06164 0.08537 0.18436
0.72457 0.10116 0.05704 0.05193 0.05894 0.08756
0.64509 0.11533 0.06246 0.05178 0.05005 0.05383
0.16998 0.06736 0.06823 0.06441 0.04954 0.0378
0.0234 0.03709 0.05334 0.06962 0.05002 0.03028


Figure 9: Normalized inverse von Mises stresses

It was observed during the development stages that the target model was getting updated
more frequently than intended. This was leading to overestimation of future reward values.
A deque memory buffer of size 30000 was kept to store recent states, rewards, actions and
termination of the episodes.

7.1 Qualitative assessment

Due to the MMA approach being a traditional numerical approach we can assume that
the design it delivers is optimal. That is why we consider that, when a model manages
to replicate the basic shape of that solution, it is on the right path. For our specific
6x6 example where the fixed boundary points and the force origin are placed on opposite
sides, the material that has to be removed first is located in the upper right corner and in
the space between the 2 bounded cells. This means that in the end, our DQN agent has
to create a topology that resembles the topology created through the MMA method (see
figure 10). We can see that even after 2245 episodes the model starts to create designs
that resemble the correct topology. For example in the following figure the differences
between the 2 topologies can be resolved by moving 4 of the cells.

Figure 10: Comparison of solutions

7.2 Quantitative Assessment

As stated by Mnih et al. [18] a good way to assess the performance of the model is by
plotting the rewards and Q-values averaged by episodes. The reward plot is more noisy

8 CONCLUSION 26

than the Q-values plot, but this is due to the fact that the reward depends only on the
current step.
Therefore, a better candidate for the quantitative assessment is the Q-value function. One
reason for this is because the Q-value considers both the reward of the current step and
the discounted rewards of he following steps. In the figure 11, it is seen that Q-values
are noisy during the initial episodes and then later seem to stabilize as the agent starts
to transition into the exploitation phase. The former is because most of the actions are
taken at random to explore more the action space and the number of DQN calls are lower
in number. The values are still noisy during the end as the agent needs to still train for
a large number of episodes to attain a more stable Q-value. However as seen initially
the value become lesser noisy as agent trains and its further understood that the values
would stabilize for episodes in the range of 10,000. It should however be noted that the
two plots are from different training loops, which went on for 5000 11 and 2000 12 episodes
respectively.

Figure 11: Averaged Q-Values for the first 4000 episodes

Figure 12: Averaged Rewards Values for the first 2000 episodes

8 Conclusion

We used an existing FEA simulator from JAX-FEM and successfully integrated it with
a Double DQN based RL model written in Keras closely adopted along the lines of [4].
The simulator was used to generate the state for the environment and the DQN agent
worked towards achieving a design objective by taking it as an input. It was observed
that the Double DQN does a good job at learning the topology optimization procedure,
and is able to remove elements based on the FEA based reward. By further exploring the

9 FUTURE WORK 27

hyperparameters space by varying the γ, memory size, auxilliary model update frequency,
epsilon decay rate and network architecture, better training performance is possible. The
trained Double DQN thus gives topologies on par with the numerical MMA from the
authors of JAX-FEM, however it still has significant work left to be done to make it as
accurate and efficient to traditional numerical approaches.
Given the versatile nature of Reinforcement learning, it can be adapted to solving many
such physical problem, if physics aware environments and rewards are cleverly designed.

9 Future Work

Future work includes changing the model architecture and introducing a more informative
input to the Double DQN, like adding resnet based skip connections and dense layers,
and introducing an additional feature channel that stores the voided elements respectively.
One problem we stumbled upon while training the DQN model was that it repeatedly
tried to remove voided cells. We believe that, by enhancing the input of the model with
a mask of the already voided cells, the predictions will be able to lower the Q-value for
the removed elements. Hence, the probability of removing a voided element for a second
time would be reduced.
The model trained with these approaches can then be used and experimented on larger
topologies. For example after the current TO results in an optimal state the topology
can be expanded by a factor of 2 or more and the resulting topology can once again
become an input to the trained network to handle more realistic topology optimization
problems successively [4], by performing the aforementioned Progressive Refinement. A
good future direction would be to take the same optimization based problem and extend
it to aerodynamic shape optimization where the agent receives the forces on the initial
topology as input and successively removes elements to optimize for the lift to drag ratio.
However, work still needs to be done to make it as accurate, if not more, than traditional
approaches to solve physical problems, and even better, to integrate it any a way that it
assists the traditional approaches to compute faster and more accurate solutions.
Improvements can also be done on the computational side. Our approach use the solutions
provided by Keras for creating the learning model. However, it uses only the CPU for
computation. Lately, there have been improvements in the field of GPU-based solvers.
Some noteworthy examples are Isaac Gym by Makoviychuk et al. [17] where both the
physics simulations and the learning on the agent side are done simultaneously on the
GPU by allowing the two to communicate via tensors buffers or PureJaxRL by Lu et
al. [15], which is able to run a large number of RL agents in parallel on GPUs. Redesigning
our implementation according to any of these frameworks could prove more efficient not
only in the time required for the learning, but also in the accuracy of the solutions.

References

[1] Bezgin, D. A., Buhendwa, A. B., and Adams, N. A. Jax-fluids: A fully-
differentiable high-order computational fluid dynamics solver for compressible two-
phase flows. Computer Physics Communications 282 (2023), 108527.

REFERENCES 28

[2] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C.,
Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-
Milne, S., and Zhang, Q. JAX: composable transformations of Python+NumPy
programs, 2018.

[3] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., and Zaremba, W. Openai gym, 2016.

[4] Brown, N. K., Garland, A. P., Fadel, G. M., and Li, G. Deep reinforce-
ment learning for engineering design through topology optimization of elementally
discretized design domains. Materials & Design 218 (2022), 110672.

[5] Chollet, F., et al. Keras. https://keras.io, 2015.

[6] Eckardt, J.-N., Wendt, K., BornhÃ¤user, M., and Middeke, J. M. Re-
inforcement learning for precision oncology. Cancers 13, 18 (2021).

[7] Griewank, A., and Walther, A. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. SIAM, 2008.

[8] Hayashi, K., and Ohsaki, M. Reinforcement learning and graph embedding
for binary truss topology optimization under stress and displacement constraints.
Frontiers in Built Environment 6 (2020).

[9] Kamensky, D., and Bazilevs, Y. tigar: Automating isogeometric analysis with
fenics. Computer Methods in Applied Mechanics and Engineering 344 (2019), 477–
498.

[10] Kanno, Y. A kernel method for learning constitutive relation in data-driven compu-
tational elasticity. Japan Journal of Industrial and Applied Mathematics 38 (2021),
39–77.

[11] Kober, J., Bagnell, J., and Peters, J. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research 32 (09 2013), 1238–1274.

[12] Kollmann, H. T., Abueidda, D. W., Koric, S., Guleryuz, E., and Sobh,
N. A. Deep learning for topology optimization of 2d metamaterials. Materials &
Design 196 (2020), 109098.

[13] Lei, X., Liu, C., Du, Z., Zhang, W., and Guo, X. Machine learning driven
real time topology optimization under moving morphable component (mmc)-based
framework. Journal of Applied Mechanics 86 (08 2018).

[14] Lindsay, A., Stogner, R., Gaston, D., Schwen, D., Matthews, C., Jiang,
W., Aagesen, L. K., Carlsen, R., Kong, F., Slaughter, A., et al. Auto-
matic differentiation in metaphysicl and its applications in moose. Nuclear Technology
207, 7 (2021), 905–922.

[15] Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt, C., and
Foerster, J. Discovered policy optimisation. Advances in Neural Information
Processing Systems 35 (2022), 16455–16468.

https://keras.io

REFERENCES 29

[16] Lu, J. Protein folding structure prediction using reinforcement learning with appli-
cation to both 2d and 3d environments. Association for Computing Machinery.

[17] Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Mack-
lin, M., Hoeller, D., Rudin, N., Allshire, A., Handa, A., and State, G.
Isaac gym: High performance gpu-based physics simulation for robot learning, 2021.

[18] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., and Riedmiller, M. Playing atari with deep reinforcement learn-
ing, 2013.

[19] Rosinha, I. P., Gernaey, K. V., Woodley, J. M., and Kruhne, U. Topol-
ogy optimization for biocatalytic microreactor configurations. In 12th International
Symposium on Process Systems Engineering and 25th European Symposium on Com-
puter Aided Process Engineering, K. V. Gernaey, J. K. Huusom, and R. Gani, Eds.,
vol. 37 of Computer Aided Chemical Engineering. Elsevier, 2015, pp. 1463–1468.

[20] Shao, K., Tang, Z., Zhu, Y., Li, N., and Zhao, D. A survey of deep reinforce-
ment learning in video games, 2019.

[21] Sosnovik, I., and Oseledets, I. Neural networks for topology optimization,
2017.

[22] Svanberg, K. The method of moving asymptotes a new method for structural
optimization. International Journal for Numerical Methods in Engineering 24 (1987),
359–373.

[23] Ulu, E., Zhang, R., and Kara, L. A data-driven investigation and estimation
of optimal topologies under variable loading configurations. Computer Methods in
Biomechanics and Biomedical Engineering: Imaging & Visualization 4 (08 2015),
1–12.

[24] van Hasselt, H., Guez, A., and Silver, D. Deep reinforcement learning with
double q-learning, 2015.

[25] Vigliotti, A., and Auricchio, F. Automatic differentiation for solid mechanics.
Archives of Computational Methods in Engineering 28, 3 (2021), 875–895.

[26] Woldseth, R. V., Aage, N., Bærentzen, J. A., and Sigmund, O. On the
use of artificial neural networks in topology optimisation. Structural and Multidisci-
plinary Optimization 65, 10 (oct 2022).

[27] Xue, T., Adriaenssens, S., and Mao, S. Learning the nonlinear dynamics of
soft mechanical metamaterials with graph networks. arXiv preprint arXiv:2202.13775
(2022).

[28] Xue, T., Gan, Z., Liao, S., and Cao, J. Physics-embedded graph network for
accelerating phase-field simulation of microstructure evolution in additive manufac-
turing. npj Computational Materials 8, 1 (2022), 201.

A PROJECT CODE 30

[29] Xue, T., Liao, S., Gan, Z., Park, C., Xie, X., Liu, W. K., and Cao, J.
JAX-FEM: A differentiable GPU-accelerated 3d finite element solver for automatic
inverse design and mechanistic data science. Computer Physics Communications 291
(oct 2023), 108802.

[30] Yang, T. Advancing non-convex and constrained learning: challenges and oppor-
tunities. AI Matters 5, 3 (2019), 29–39.

A Project Code

A.1 Code of problem.py

1 import numpy as onp

2 import jax

3 import jax.numpy as np

4 import os

5 import glob

6 import matplotlib.pyplot as plt

7 from scipy.ndimage.measurements import label

8

9 from jax_am.fem.core import FEM

10 from jax_am.fem.solver import solver, ad_wrapper

11 from jax_am.fem.utils import save_sol

12 from jax_am.fem.generate_mesh import get_meshio_cell_type, Mesh

13 from jax_am.common import rectangle_mesh

14 from fem_model import Elasticity

15

16 os.environ["CUDA_VISIBLE_DEVICES"] = "2" # --> Only activate when there

is a CUDA-device in the system↪→

17

18 def _clear_previous_output_files(self):

19 """

20 Clears previous outputs in the current folder.

21 """

22 data_path = os.path.join(os.path.dirname(__file__), 'data')

23 files = glob.glob(os.path.join(data_path, f'vtk/*'))

24 for f in files:

25 os.remove(f)

26

27 class ProblemSetup(Elasticity):

28 def __init__(self, Nx, Ny, Lx, Ly, num_bounded_cell=2,

num_loaded_cell=1, filled_density=1., void_density=0., dim=2,

vec=2):

↪→

↪→

29 self.Nx, self.Ny = Nx, Ny

30 self.Lx, self.Ly = Lx, Ly

A PROJECT CODE 31

31 self.num_bounded_cell, self.num_loaded_cell = num_bounded_cell,

num_loaded_cell↪→

32 self.filled_density, self.void_density = filled_density,

void_density↪→

33 self.vec = vec

34 self.dim = dim

35 self.ele_type = 'QUAD4'

36 self.cell_type = get_meshio_cell_type(self.ele_type)

37 self.meshio_mesh = rectangle_mesh(Nx=Nx, Ny=Ny, domain_x=Lx,

domain_y=Ly)↪→

38 self.mesh = Mesh(self.meshio_mesh.points,

self.meshio_mesh.cells_dict[self.cell_type])↪→

39 self.cells = self.mesh.cells

40 self.points = self.mesh.points

41 self.cell_inds = np.arange((Nx * Ny), dtype=np.int32)

42 self.cell_inds_matrix =

self._state_matrix_from_array(self.cell_inds, self.Nx,

self.Ny)

↪→

↪→

43 self.point_inds_matrix =

self._state_matrix_from_array(np.arange(len(self.points)),

self.Nx+1, self.Ny+1)

↪→

↪→

44

45

46 def _state_matrix_from_array(self, state_array: np.ndarray, num_row:

int, num_column: int) -> np.ndarray:↪→

47 """

48 Converts given array to matrix form with same topological

representation of JAX-FEM format.↪→

49 [2 5 8]

50 e.g. [0, 1, 2, 3, 4, 5, 6, 7, 8] --> [1 4 7]

51 [0 3 6]

52 Args:

53 state_array (np.ndarray): input array

54 num_row (int) : number of row of output matrix

55 num_column (int) : number of column of output matrix

56 Returns:

57 Output matrix in predefined geometry represantation defined

by Jax-Fem↪→

58 """

59 return onp.rot90(onp.reshape(state_array, (num_row, num_column)),

k=1, axes=(0, 1))↪→

60

61

62 def _state_array_from_matrix(state_matrix: np.ndarray) -> np.ndarray:

63 """

64 Converts a state matrix into state vector.

A PROJECT CODE 32

65 [2 5 8]

66 e.g. [1 4 7] --> [0, 1, 2, 3, 4, 5, 6, 7, 8]

67 [0 3 6]

68 Args:

69 state_matrix (np.ndarray): input state matrix represents

topological indexing format of Jax-FEM↪→

70 Returns:

71 Array representation of given matrix.

72 """

73 return onp.reshape(onp.rot90(state_matrix, k=1, axes=(1, 0)),

(-1))↪→

74

75

76 def _catagorize_cells(self):

77 """

78 Categorizes the cells wrt their topological locations.

79 Note: Left-Top-Right-Bottom edge cell indices do not contain

corner element indices at these edges↪→

80 [2 5 8]

81 e.g. [1 4 7]

82 [0 3 6]

83 Args:

84 Returns:

85 inner_cell_inds : e.g. [4]

86 outer_cell_inds : e.g. [0, 1, 2, 3, 5, 6, 7, 8]

87 outer_corner_cell_inds : e.g. [0, 6, 8, 2]

88 left_edge_cell_inds : e.g. [1]

89 top_edge_cell_inds : e.g. [5]

90 right_edge_cell_inds : e.g. [7]

91 bottom_edge_cell_inds : e.g. [3]

92 """

93 cell_inds_matrix = self._state_matrix_from_array(self.cell_inds,

self.Nx, self.Ny)↪→

94 inner_cell_inds = onp.reshape((cell_inds_matrix)[1:self.Nx-1,

1:self.Ny-1], -1)↪→

95 outer_cell_inds = onp.delete(self.cell_inds, inner_cell_inds)

96 outer_corner_cell_inds = onp.array((cell_inds_matrix[self.Nx-1,

0], cell_inds_matrix[self.Nx-1, self.Ny-1],

cell_inds_matrix[0, self.Ny-1], cell_inds_matrix[0, 0]),

dtype=int)

↪→

↪→

↪→

97 left_edge_cell_inds = cell_inds_matrix[1:self.Ny-1, 0][::-1]

98 top_edge_cell_inds = cell_inds_matrix[0, 1:self.Nx-1]

99 right_edge_cell_inds = cell_inds_matrix[1:self.Ny-1,

self.Nx-1][::-1]↪→

100 bottom_edge_cell_inds = cell_inds_matrix[self.Ny-1, 1:self.Nx-1]

A PROJECT CODE 33

101 return inner_cell_inds, outer_cell_inds, outer_corner_cell_inds,

left_edge_cell_inds, top_edge_cell_inds,

right_edge_cell_inds, bottom_edge_cell_inds

↪→

↪→

102

103

104 def select_bounded_and_loaded_cells(self):

105 """

106 Performs random cell selection to assign boundary conditions on

their choses points.↪→

107 Note: Number of cells to be selected for Dirichlet and Neumann

boundary conditions are passed as input for the class.↪→

108 Args:

109 self.num_bounded_cell (int)

110 self.num_loaded_cell (int)

111 Returns:

112 bounded_cell_inds (list)

113 loaded_cell_inds (list)

114 """

115 _ , outer_cell_inds, _, _, _, _, _ = self._catagorize_cells()

116 bounded_cell_inds = onp.random.choice(outer_cell_inds,

self.num_bounded_cell, replace=False)↪→

117 cell_inds = onp.delete(self.cell_inds, bounded_cell_inds)

118 loaded_cell_inds = onp.random.choice(cell_inds,

self.num_loaded_cell, replace=False)↪→

119 #loaded_cell_inds = [30]

120 return bounded_cell_inds, loaded_cell_inds

121

122 def select_bounded_and_loaded_points(self, bounded_cell_inds:

np.ndarray, loaded_cell_inds: np.ndarray) -> list:↪→

123 """

124 Performs point selection to assign boundary conditions for given

cells.↪→

125 Note : It contains a part to be update. For now it is

implemented such to be work properly in neumann bc application, but

deviates from the paper!

↪→

↪→

126 Args:

127 bounded_cell_inds (np.ndarray): Cell indices selected

for Dirichlet BC assignment.↪→

128 loaded_cell_inds (np.ndarray): Cell indices selected

for Neumann BC assignment.↪→

129 Returns:

130 bounded_cell_inds (list): Selected point indices wrt given

cell indices for Dirichlet BC assignment.↪→

131 loaded_cell_inds (list): Selected point indices wrt given

cell indices for Neumann BC assignment.↪→

132 """

A PROJECT CODE 34

133 inner_cell_inds, outer_cell_inds, corner_cell_inds,

left_edge_cell_inds, top_edge_cell_inds,

right_edge_cell_inds, bottom_edge_cell_inds=

self._catagorize_cells()

↪→

↪→

↪→

134

135 bounded_point_inds = []

136 loaded_point_inds = []

137 for bounded_cell in bounded_cell_inds:

138 if bounded_cell in corner_cell_inds:

139 bounded_point =

self.cells[bounded_cell][onp.where(bounded_cell ==

corner_cell_inds)]

↪→

↪→

140 bounded_point_inds.append(int(bounded_point))

141 else:

142 if bounded_cell in left_edge_cell_inds:

143 bounded_point1, bounded_point2 =

self.cells[bounded_cell][0],

self.cells[bounded_cell][3]

↪→

↪→

144 elif bounded_cell in top_edge_cell_inds:

145 bounded_point1, bounded_point2 =

self.cells[bounded_cell][2],

self.cells[bounded_cell][3]

↪→

↪→

146 elif bounded_cell in right_edge_cell_inds:

147 bounded_point1, bounded_point2 =

self.cells[bounded_cell][1],

self.cells[bounded_cell][2]

↪→

↪→

148 else:

149 bounded_point1, bounded_point2 =

self.cells[bounded_cell][0],

self.cells[bounded_cell][1]

↪→

↪→

150 bounded_point_inds.append(bounded_point1)

151 bounded_point_inds.append(bounded_point2)

152 for loaded_cell in loaded_cell_inds:

153 if loaded_cell in corner_cell_inds:

154 # loaded_point =

cells[loaded_cell][onp.where(loaded_cell ==

outer_corner_cell_inds)]

↪→

↪→

155 # loaded_points.append(loaded_point)

156 #index = onp.random.randint(0, 4)

157 index = 0

158 loaded_point1, loaded_point2 =

self.cells[loaded_cell][index],

self.cells[loaded_cell][(index+1)%4]

↪→

↪→

159 loaded_point_inds.append(loaded_point1)

160 loaded_point_inds.append(loaded_point2)

161 else:

A PROJECT CODE 35

162 if loaded_cell in bottom_edge_cell_inds:

163 loaded_point1, loaded_point2 =

self.cells[loaded_cell][0],

self.cells[loaded_cell][1]

↪→

↪→

164 elif loaded_cell in left_edge_cell_inds:

165 loaded_point1, loaded_point2 =

self.cells[loaded_cell][0],

self.cells[loaded_cell][3]

↪→

↪→

166 elif loaded_cell in top_edge_cell_inds:

167 loaded_point1, loaded_point2 =

self.cells[loaded_cell][2],

self.cells[loaded_cell][3]

↪→

↪→

168 elif loaded_cell in right_edge_cell_inds:

169 loaded_point1, loaded_point2 =

self.cells[loaded_cell][1],

self.cells[loaded_cell][2]

↪→

↪→

170 else:

171 #index = onp.random.randint(0, 4)

172 index = 0

173 loaded_point1, loaded_point2 =

self.cells[loaded_cell][index],

self.cells[loaded_cell][(index+1)%4]

↪→

↪→

174 loaded_point_inds.append(loaded_point1)

175 loaded_point_inds.append(loaded_point2)

176 return sorted([*set(bounded_point_inds)]),

sorted([*set(loaded_point_inds)]) # FIX IN THE FUTURE (for

now if the loaded_points has 1 element, causes error!)

↪→

↪→

177

178 def _cell_point_relation_check(self):

179 """

180 Easy check for confirmation of selected cell and selected point

relations.↪→

181 Returns:

182 Prints points inds and its index for given cell, otherwise

returns a warning message.↪→

183 """

184 pass

185

186 def set_dirichlet_bc(self, selected_points: list) -> list:

187 """

188 Creates required Dirichlet boundary input for Jax-FEM solver for

given points.↪→

189 Note : It assigns 0 displacement to given points in 2

direction.↪→

190 Note : This method includes hardcoding and right now work for

len(selected_points) = 2 or 3 or 4 cases.↪→

A PROJECT CODE 36

191 Args:

192 selected_points (list): Selected points for Dirichlet BC

assignment↪→

193 Returns:

194 Required list for JAX-FEM solver contains fix point

locations, vectors (in which directions the displacement should be

applied), value list (displacement value)

↪→

↪→

195 """

196 fix_location_list = []

197 vector_list = []

198 dirichlet_value_list = []

199 if len(selected_points) == 2:

200 fix_location1 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[0]][0]), np.isclose(point[1],

self.points[selected_points[0]][1]))

↪→

↪→

↪→

201 fix_location2 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[1]][0]), np.isclose(point[1],

self.points[selected_points[1]][1]))

↪→

↪→

↪→

202 vector_list = [0, 1, 0, 1]

203 dirichlet_value = lambda point: 0.

204 fix_location_list = [fix_location1, fix_location1,

fix_location2, fix_location2]↪→

205 dirichlet_value_list = [dirichlet_value, dirichlet_value,

dirichlet_value, dirichlet_value]↪→

206 if len(selected_points) == 3:

207 fix_location1 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[0]][0]), np.isclose(point[1],

self.points[selected_points[0]][1]))

↪→

↪→

↪→

208 fix_location2 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[1]][0]), np.isclose(point[1],

self.points[selected_points[1]][1]))

↪→

↪→

↪→

209 fix_location3 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[2]][0]), np.isclose(point[1],

self.points[selected_points[2]][1]))

↪→

↪→

↪→

210 vector_list = [0, 1, 0, 1, 0, 1]

211 dirichlet_value = lambda point: 0.

212 fix_location_list = [fix_location1, fix_location1,

fix_location2, fix_location2, fix_location3,

fix_location3]

↪→

↪→

A PROJECT CODE 37

213 dirichlet_value_list = [dirichlet_value, dirichlet_value,

dirichlet_value, dirichlet_value, dirichlet_value,

dirichlet_value]

↪→

↪→

214 if len(selected_points) == 4:

215 fix_location1 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[0]][0]), np.isclose(point[1],

self.points[selected_points[0]][1]))

↪→

↪→

↪→

216 fix_location2 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[1]][0]), np.isclose(point[1],

self.points[selected_points[1]][1]))

↪→

↪→

↪→

217 fix_location3 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[2]][0]), np.isclose(point[1],

self.points[selected_points[2]][1]))

↪→

↪→

↪→

218 fix_location4 = lambda point:

np.logical_and(np.isclose(point[0],

self.points[selected_points[3]][0]), np.isclose(point[1],

self.points[selected_points[3]][1]))

↪→

↪→

↪→

219 vector_list = [0, 1, 0, 1, 0, 1, 0, 1]

220 dirichlet_value = lambda point: 0.

221 fix_location_list = [fix_location1, fix_location1,

fix_location2, fix_location2, fix_location3,

fix_location3, fix_location4, fix_location4]

↪→

↪→

222 dirichlet_value_list = [dirichlet_value, dirichlet_value,

dirichlet_value, dirichlet_value, dirichlet_value,

dirichlet_value, dirichlet_value, dirichlet_value]

↪→

↪→

223 return [fix_location_list, vector_list, dirichlet_value_list]

224

225 def set_neumann_bc(self, selected_points: list) -> list:

226 """

227 Creates required Neumann boundary input for Jax-FEM solver for

given points.↪→

228 Args:

229 selected_points (list): Selected points for Neumann BC

assignment↪→

230 Returns:

231 Required list for JAX-FEM solver contains load point

locations, force values in each axis assigned in random directions↪→

232 """

233 load_location_list = []

234 neumann_val_list = []

235 load_location = lambda point: np.logical_and(

A PROJECT CODE 38

236 np.isclose(point[0], (self.points[selected_points[0]][0] +

self.points[selected_points[1]][0])/2, atol= 1e-5 +

onp.abs(self.points[selected_points[0]][0] -

self.points[selected_points[1]][0])),

↪→

↪→

↪→

237 np.isclose(point[1], (self.points[selected_points[0]][1] +

self.points[selected_points[1]][1])/2, atol= 1e-5 +

onp.abs(self.points[selected_points[0]][1] -

self.points[selected_points[1]][1])))

↪→

↪→

↪→

238 #neumann_val = lambda point: np.array([100., 100.]) *

onp.random.choice([1, -1], 2)↪→

239 neumann_val = lambda point: np.array([0, -0.1])

240 load_location_list.append(load_location)

241 neumann_val_list.append(neumann_val)

242 return [load_location_list, neumann_val_list]

243

244 def problem_define(self, dirichlet_bc_info: list, neumann_bc_info:

list):↪→

245 """

246 Creates an Elasticity instance by passing required inputs.

247 """

248 return Elasticity(mesh=self.mesh, vec=self.vec, dim=self.dim,

ele_type=self.ele_type, dirichlet_bc_info=dirichlet_bc_info,↪→

249 neumann_bc_info=neumann_bc_info,

additional_info=('box',))↪→

250

251 def problem_solve(self, problem, rho: np.ndarray):

252 """

253 Advances one step the given problem instance through solver by

taking rho as design input and returns the solution.↪→

254 """

255 fwd_pred = ad_wrapper(problem, linear=True, use_petsc=True)

256 rho = rho.reshape((-1,1))

257 return fwd_pred(rho)

258

259 def create_state_space_tensor(self, rho_vector: np.ndarray,

von_mises: np.ndarray, bounded_cell_inds:np.ndarray,

loaded_cell_inds: np.ndarray) -> np.ndarray:

↪→

↪→

260 """

261 Creates required DQN input 3 x N x N state tensor

262 Args:

263 rho_vector (np.ndarray) : density vector

264 von_mises (np.ndarray) : von mises vector

265 bounded_cell_inds (np.ndarray) :

266 loaded_cell_inds (np.ndarray) :

267 Returns:

A PROJECT CODE 39

268 state_tensor_DQN : NxNx3 tensor which will be

used in DQN training↪→

269 state_tensor_check : 3xNxN tensor used for

illegality check and visualization↪→

270 """

271

272 inverse_von_mises_array = np.zeros_like(von_mises)

273 max_VM = np.max(von_mises)

274 print(f'max_VM here :{max_VM} at {np.argmax(von_mises)}')

275 for i in range(len(von_mises)):

276 if rho_vector[i] > self.void_density:

277 inverse_von_mises_array =

inverse_von_mises_array.at[i].set(max_VM/von_mises[i])↪→

278

279 inverse_von_mises_array =

inverse_von_mises_array.at[inverse_von_mises_array>1e3].set(0.)↪→

280 inverse_von_mises_array =

inverse_von_mises_array/np.max(inverse_von_mises_array)↪→

281 bounded_cells_state_array =

self.cell_inds[onp.where((self.cell_inds ==

bounded_cell_inds[0]) | (self.cell_inds ==

bounded_cell_inds[1]), 1, 0)] # hard_coded to return 2

cells

↪→

↪→

↪→

↪→

282 loaded_cells_state_array =

self.cell_inds[onp.where((self.cell_inds ==

loaded_cell_inds), 1, 0)] # hard_coded to return 1 cell

↪→

↪→

283 inverse_von_mises_matrix =

self._state_matrix_from_array(inverse_von_mises_array,

self.Nx, self.Ny)

↪→

↪→

284 bounded_cells_state_matrix =

self._state_matrix_from_array(bounded_cells_state_array,

self.Nx, self.Ny)

↪→

↪→

285 loaded_cells_state_matrix =

self._state_matrix_from_array(loaded_cells_state_array,

self.Nx, self.Ny)

↪→

↪→

286 state_tensor_DQN = np.stack((inverse_von_mises_matrix,

bounded_cells_state_matrix, loaded_cells_state_matrix),

axis=2)

↪→

↪→

287 state_tensor_check = np.stack((inverse_von_mises_matrix,

bounded_cells_state_matrix, loaded_cells_state_matrix),

axis=0)

↪→

↪→

288 return state_tensor_DQN, state_tensor_check

289

290 def check_illegal(self, rho_matrix: np.ndarray, new_point: int,

state_tensor: np.ndarray, nb_step: int, nb_max_step: int) ->

bool:

↪→

↪→

A PROJECT CODE 40

291 """

292 Checks whether the selected point can be removed

293 Args:

294 rho (np.ndarray) : The boolean mask of

the topology (shape Nx x Ny)↪→

295 new_point (int) : The index of the cell

to be removed↪→

296 state_matrix (np.ndarray) : The state matrix that

contains inv_von_mises, bounded_cells, and loaded_cells arrays

(shape : 3 x Nx x Ny)

↪→

↪→

297 self.cell_inds_matrix (np.ndarray) : The matrix contains

cell indices in the order that represents geometry (x = 0 is at the

LEFT, y = 0 is at the BOTTOM) (shape: Nx x Ny)

↪→

↪→

298 self.filled_denstiy (float) : The material intensity

value for filled cells↪→

299 self.void_density (float) : The material intensity

value for void cells↪→

300

301 Returns:

302 True if the cell can be removed and False otherwise

303 """

304 _, bounds, forces = state_tensor

305 Nx, Ny = rho_matrix.shape

306 new_point_inds = onp.argwhere(self.cell_inds_matrix ==

new_point)[0]↪→

307 x, y = new_point_inds

308

309 # (A) If the to-be-removed point has the coordinates of a

boundary condition or of a force origin↪→

310

311 if bounds[x, y]==self.filled_density or forces[x,

y]==self.filled_density:↪→

312 print("\nIllegality check --> False")

313 print(f"You are trying to remove bounded or loaded cell

number {new_point}.")↪→

314 return True

315

316 # (B) If the to-be-removed point has already been removed

317

318 if rho_matrix[x, y] == self.void_density:

319 print("\nIllegality check --> False")

320 print(f"You are trying to remove already removed cell number

{new_point}.")↪→

321 return True

322

323 # (C) Making sure for only one connected component

A PROJECT CODE 41

324 new_rho_matrix = onp.floor(rho_matrix)

325 new_rho_matrix[x, y] = 0

326 labeled, ncomponents = label(new_rho_matrix)

327 if ncomponents > 1:

328 print("\nIllegality check --> False")

329 print(f"More than one component by removing cell number

{new_point}.")↪→

330 print(labeled)

331 return True

332

333 if nb_step > nb_max_step:

334 return True

335

336 # If everything complies to the rules:

337 return False

338

339 def test_check_illegal(self, state_tensor: np.ndarray,

pre_created_rho: np.ndarray=None,

pre_selected_cell_to_be_removed: int=None):

↪→

↪→

340 """

341 Created for testing check_illegal function using predefined or

random scenarios.↪→

342 """

343 rho_matrix = onp.where(onp.random.randint(2, size=(self.Nx,

self.Ny))==0, self.void_density, self.filled_density)↪→

344 cell_to_be_removed =

(self.cell_inds_matrix[onp.random.choice(onp.arange(self.Nx)),

onp.random.choice(onp.arange(self.Ny))])

↪→

↪→

345 if pre_created_rho is not None:

346 rho_matrix = pre_created_rho

347 if pre_selected_cell_to_be_removed is not None:

348 cell_to_be_removed = pre_selected_cell_to_be_removed

349 check = self.check_illegal(rho_matrix, cell_to_be_removed,

state_tensor)↪→

350 if check:

351 print("LEGAL ACTION!!!")

352 else:

353 print()

354 print("ILLEGAL ACTION!!!")

355 print(f"Selected cell '{cell_to_be_removed}' can not be

removed.")↪→

356 print(f"Cell_indices_matrix = \n{self.cell_inds_matrix}")

357 print(f"Rho matrix = \n{rho_matrix}")

358 print(f"Bounded cell matrix = \n{state_tensor[1]}")

359 print(f"Loaded cell matrix = \n{state_tensor[2]}")

360

A PROJECT CODE 42

361

362 def update_density(self, rho_vector: np.ndarray, cell_index: int) ->

np.ndarray:↪→

363 """

364 Updates selected index of density vector with

self.void_density.↪→

365 Args:

366 rho_vector (np.ndarray) : Density vector that

contains denstiy values for each cell↪→

367 new_point (int) : The index of the cell

to be removed↪→

368 Returns:

369 Updated rho vector and its state represantation formatted

rho matrix↪→

370 """

371 rho_vector[cell_index] = self.void_density

372 rho_matrix = self._state_matrix_from_array(rho_vector, self.Nx,

self.Ny)↪→

373 return rho_vector, rho_matrix

374

375

376 def positive_reward(self, strain_energy_initial: float,

strain_energy_current: float, num_of_voided_cells: int,

num_of_total_cells: int) -> float:

↪→

↪→

377 """

378 Updates selected index of density vector with

self.void_density.↪→

379 Args:

380 init_von_mises (float) : Von mises stresses at

initial state↪→

381 current_von_mises (float) : Von mises stresses at the

current state↪→

382 num_of_voided_cells (int) : Number of voided cell

including the current state↪→

383 num_of_total_cells (int) : Number of total cell in

the topology↪→

384 Returns:

385 Positive reward value after each successful action

386 """

387

388 return (strain_energy_initial / strain_energy_current) ** 2 +

(num_of_voided_cells / num_of_total_cells) ** 2↪→

A PROJECT CODE 43

A.2 Code of fem model.py

1 import numpy as onp

2 import jax

3 import jax.numpy as np

4

5 from jax_am.fem.core import FEM

6

7

8 class Elasticity(FEM):

9 def custom_init(self, case_flag):

10 self.cell_centroids = onp.mean(onp.take(self.points, self.cells,

axis=0), axis=1)↪→

11 self.flex_inds = np.arange(len(self.cells))

12 self.case_flag = case_flag

13 if case_flag == 'freecad':

14 self.get_tensor_map = self.get_tensor_map_freecad

15 elif case_flag == 'box':

16 self.get_tensor_map = self.get_tensor_map_box

17 elif case_flag == 'multi_material':

18 self.get_tensor_map = self.get_tensor_map_multi_material

19 elif case_flag == 'plate' or case_flag == 'L_shape' or case_flag

== 'eigen':↪→

20 self.get_tensor_map = self.get_tensor_map_plane_stress

21 if case_flag == 'eigen':

22 self.penal = 5.

23 else:

24 self.penal = 3.

25 else:

26 raise ValueError(f"Unknown case_flag = {case_flag}")

27

28 def get_tensor_map_plane_stress(self):

29 def stress(u_grad, theta):

30 # Reference:

https://engcourses-uofa.ca/books/introduction-to-solid-mechanics/↪→

31 #

constitutive-laws/linear-elastic-materials/plane-isotropic-linear-elastic-materials-constitutive-laws/↪→

32 Emax = 70.e9

33 Emin = 1e-3*Emax

34 nu = 0.3

35

36 penal = self.penal

37

38 E = Emin + (Emax - Emin)*theta[0]**penal

39 epsilon = 0.5*(u_grad + u_grad.T)

40

A PROJECT CODE 44

41 eps11 = epsilon[0, 0]

42 eps22 = epsilon[1, 1]

43 eps12 = epsilon[0, 1]

44

45 sig11 = E/(1 + nu)/(1 - nu)*(eps11 + nu*eps22)

46 sig22 = E/(1 + nu)/(1 - nu)*(nu*eps11 + eps22)

47 sig12 = E/(1 + nu)*eps12

48

49 sigma = np.array([[sig11, sig12], [sig12, sig22]])

50 return sigma

51 return stress

52

53 def get_tensor_map_freecad(self):

54 # Unit is not in SI, used for freecad example

55 def stress(u_grad, theta):

56 Emax = 70.e3

57 Emin = 70.

58 nu = 0.3

59 penal = 3.

60 E = Emin + (Emax - Emin)*theta[0]**penal

61 mu = E/(2.*(1. + nu))

62 lmbda = E*nu/((1+nu)*(1-2*nu))

63 epsilon = 0.5*(u_grad + u_grad.T)

64 sigma = lmbda*np.trace(epsilon)*np.eye(self.dim) +

2*mu*epsilon↪→

65 return sigma

66 return stress

67

68 def get_tensor_map_box(self):

69 def stress(u_grad, theta):

70 nu = 0.3

71 E = theta[0]

72 mu = E/(2.*(1. + nu))

73 lmbda = E*nu/((1+nu)*(1-2*nu))

74 epsilon = 0.5*(u_grad + u_grad.T)

75 sigma = lmbda*np.trace(epsilon)*np.eye(self.dim) +

2*mu*epsilon↪→

76 return sigma

77 return stress

78

79 def get_tensor_map_multi_material(self):

80 def stress(u_grad, theta):

81 Emax = 70.e3

82 Emin = 70.

83 nu = 0.3

84 penal = 3.

A PROJECT CODE 45

85

86 E1 = Emax

87 E2 = 0.2*Emax

88

89 theta1, theta2 = theta

90 E = Emin + theta1**penal*(theta2**penal*E1 + (1 -

theta2**penal)*E2)↪→

91

92 mu = E/(2.*(1. + nu))

93 lmbda = E*nu/((1+nu)*(1-2*nu))

94 epsilon = 0.5*(u_grad + u_grad.T)

95 sigma = lmbda*np.trace(epsilon)*np.eye(self.dim) +

2*mu*epsilon↪→

96 return sigma

97 return stress

98

99 def set_params(self, params):

100 full_params = np.ones((self.num_cells, params.shape[1]))

101 full_params = full_params.at[self.flex_inds].set(params)

102 thetas = np.repeat(full_params[:, None, :], self.num_quads,

axis=1)↪→

103 self.full_params = full_params

104 self.internal_vars['laplace'] = [thetas]

105

106 def compute_compliance(self, neumann_fn, sol):

107 boundary_inds = self.neumann_boundary_inds_list[0]

108 _, nanson_scale = self.get_face_shape_grads(boundary_inds)

109 # (num_selected_faces, 1, num_nodes, vec) * #

(num_selected_faces, num_face_quads, num_nodes, 1)↪→

110 u_face = sol[self.cells][boundary_inds[:, 0]][:, None, :, :] *

self.face_shape_vals[boundary_inds[:, 1]][:, :, :, None]↪→

111 u_face = np.sum(u_face, axis=2) # (num_selected_faces,

num_face_quads, vec)↪→

112 # (num_cells, num_faces, num_face_quads, dim) ->

(num_selected_faces, num_face_quads, dim)↪→

113 subset_quad_points =

self.get_physical_surface_quad_points(boundary_inds)↪→

114 traction = jax.vmap(jax.vmap(neumann_fn))(subset_quad_points) #

(num_selected_faces, num_face_quads, vec)↪→

115 val = np.sum(traction * u_face * nanson_scale[:, :, None])

116 return val

117

118 def get_von_mises_stress_fn(self):

119 def stress_fn(u_grad, theta):

120 Emax = 70.e9

121 nu = 0.3

A PROJECT CODE 46

122 penal = 0.5

123 E = theta[0]**penal*Emax

124 mu = E/(2.*(1. + nu))

125 lmbda = E*nu/((1+nu)*(1-2*nu))

126 epsilon = 0.5*(u_grad + u_grad.T)

127 sigma = lmbda*np.trace(epsilon)*np.eye(self.dim) +

2*mu*epsilon↪→

128 return sigma

129

130 def vm_stress_fn_helper(sigma):

131 dim = self.dim

132 s_dev = sigma - 1./dim*np.trace(sigma)*np.eye(dim)

133 vm_s = np.sqrt(3./2.*np.sum(s_dev*s_dev))

134 return vm_s

135

136 if self.case_flag == 'plate' or self.case_flag == 'L_shape':

137 def vm_stress_fn(u_grad, theta):

138 sigma2d = stress_fn(u_grad, theta)

139 sigma3d = np.array([[sigma2d[0, 0], sigma2d[0, 1], 0.],

[sigma2d[1, 0], sigma2d[1, 1], 0.], [0., 0., 0.]])↪→

140 return vm_stress_fn_helper(sigma3d)

141 else:

142 def vm_stress_fn(u_grad, theta):

143 sigma = self.get_tensor_map()(u_grad, theta)

144 return vm_stress_fn_helper(sigma)

145

146 return vm_stress_fn

147

148 def compute_von_mises_stress(self, sol):

149 # (num_cells, 1, num_nodes, vec, 1) * (num_cells, num_quads,

num_nodes, 1, dim) -> (num_cells, num_quads, num_nodes, vec,

dim)

↪→

↪→

150 u_grads = np.take(sol, self.cells, axis=0)[:, None, :, :, None] *

self.shape_grads[:, :, :, None, :]↪→

151 u_grads = np.sum(u_grads, axis=2) # (num_cells, num_quads, vec,

dim)↪→

152 vm_stress_fn = self.get_von_mises_stress_fn()

153 vm_stress = jax.vmap(jax.vmap(vm_stress_fn))(u_grads,

*self.internal_vars['laplace']) # (num_cells, num_quads)↪→

154 volume_avg_vm_stress = np.sum(vm_stress * self.JxW, axis=1) /

np.sum(self.JxW, axis=1) # (num_cells,)↪→

155 return volume_avg_vm_stress

156

157 def compute_4_points_polygon_area(self, A, B, C, D):

158 '''

159 D---C

A PROJECT CODE 47

160 | |

161 A---B

162 '''

163 x_A, y_A = A

164 x_B, y_B = B

165 x_C, y_C = C

166 x_D, y_D = D

167

168 xs = [x_A, x_B, x_C, x_D]

169 ys = [y_A, y_B, y_C, y_D]

170

171 area = 0.0

172 for i in range(4):

173 area += xs[i] * ys[(i + 1)%4] - xs[(i + 1)%4] * ys[i]

174 area *= .5

175

176 return abs(area)

177

178 def compute_4_points_polygon_centroid(self, A, B, C, D):

179 '''

180 D---C

181 | |

182 A---B

183 '''

184 x_A, y_A = A

185 x_B, y_B = B

186 x_C, y_C = C

187 x_D, y_D = D

188

189 xs = [x_A, x_B, x_C, x_D]

190 ys = [y_A, y_B, y_C, y_D]

191

192 abs_area = self.compute_4_points_polygon_area(A, B, C, D)

193

194 c_x = 0.0

195 c_y = 0.0

196

197 for i in range(4):

198 c_x += (xs[i] + xs[(i + 1)%4]) * (xs[i] * ys[(i + 1)%4] -

xs[(i + 1)%4] * ys[i])↪→

199 c_x /= 6 * abs_area

200

201 for i in range(4):

202 c_y += (ys[i] + ys[(i + 1)%4]) * (xs[i] * ys[(i + 1)%4] -

xs[(i + 1)%4] * ys[i])↪→

203 c_y /= 6 * abs_area

A PROJECT CODE 48

204

205 c = [c_x, c_y]

206

207 return c

A.3 Code of env.py

1 import gym

2 import numpy as onp

3 import jax.numpy as np

4

5 from colorama import init, Fore, Back, Style

6 from problem import ProblemSetup

7

8 class TopOptEnv(gym.Env):

9

10 metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 4}

11

12 def __init__(self, size_x:int = 6, size_y:int = 6, render_mode=None,

jax_model=None):↪→

13 # Dimensionality of the grid

14 self.size_x, self.size_y = size_x, size_y

15 self.window_size = 512

16 self.initial_rho_vector = onp.ones((self.size_x * self.size_y,

1))↪→

17 self.jax_model = jax_model

18 self.points = self.jax_model.points

19 self.cells = self.jax_model.cells

20

21 # Our 3-dimensional array that stores the strain, boundaries

points and force-load points↪→

22 self.observation_space = gym.spaces.Dict(

23 {

24 "strains": gym.spaces.Box(low=0.0, high=1.,

shape=(size_x,size_y), dtype=onp.float32),↪→

25 "boundary": gym.spaces.Box(low=0, high=1,

shape=(size_x,size_y), dtype=int),↪→

26 "forces": gym.spaces.Box(low=0, high=1,

shape=(size_x,size_y), dtype=int),↪→

27 }

28)

29

30 self.action_space = gym.spaces.Discrete(size_x * size_y)

31 self._render_image = onp.ones((size_x, size_y))

32

A PROJECT CODE 49

33 def _coloring(self):

34 add_bounded_mask = onp.zeros((self.size_x, self.size_y))

35 for bounded in self.bounded_cells:

36 add_bounded_mask += onp.where(self.jax_model.cell_inds_matrix

== bounded, 1, 0)↪→

37

38 add_loaded_mask = onp.zeros((self.size_x, self.size_y))

39 for loaded in self.loaded_cells:

40 add_loaded_mask += onp.where(self.jax_model.cell_inds_matrix

== loaded, 2, 0)↪→

41

42 self._render_image = onp.ones((self.size_x, self.size_y)) +

add_bounded_mask + add_loaded_mask↪→

43

44

45 def _remove_cell_color(self, x, y):

46 self._render_image[x, y] = 0

47

48 def _get_obs(self):

49 self._strains, self._bounds, self._forces =

self.state_tensor_check[0,:,:],

self.state_tensor_check[1,:,:],

self.state_tensor_check[2,:,:]

↪→

↪→

↪→

50 return {"strains": self._strains,

51 "boundary": self._bounds,

52 "forces": self._forces}

53

54 def _get_info(self):

55 return self.rho_matrix

56

57 def reset(self, seed=123, options=123):

58 super().reset(seed=seed)

59

60 self.bounded_cells, self.loaded_cells =

self.jax_model.select_bounded_and_loaded_cells()↪→

61 self.max_num_step = len(self.cells) - (len(self.bounded_cells) +

len(self.loaded_cells))↪→

62

63

64 self.bounded_cells = [0,5]

65 self.loaded_cells = np.array([30])

#[onp.random.choice([30:35],size=1)]↪→

66 self.bounded_points, self.loaded_points =

self.jax_model.select_bounded_and_loaded_points(self.bounded_cells,

self.loaded_cells)

↪→

↪→

67

A PROJECT CODE 50

68 self.dirichlet_bc =

self.jax_model.set_dirichlet_bc(self.bounded_points)↪→

69

70 self.neumann_bc =

self.jax_model.set_neumann_bc(self.loaded_points)↪→

71 self.problem = self.jax_model.problem_define(self.dirichlet_bc,

self.neumann_bc)↪→

72

73 self.rho_vector = onp.copy(self.initial_rho_vector)

74 self.rho_matrix =

self.jax_model._state_matrix_from_array(self.rho_vector,

self.size_x, self.size_y)

↪→

↪→

75 self.solution = self.jax_model.problem_solve(self.problem,

self.rho_vector)↪→

76

77 self.init_SE = 0

78 for elem_nb in range(self.size_x*self.size_y):

79 elem_node_1 = int(elem_nb + elem_nb/self.size_x)

80 elem_nodes = [elem_node_1, elem_node_1 + 1, elem_node_1 +

self.size_x+1, elem_node_1 + self.size_x]↪→

81 self.init_SE +=

(self.solution[elem_nodes,:].reshape((-1,1)).T *

self.rho_vector[elem_nb]) @

self.solution[elem_nodes,:].reshape((-1,1))

↪→

↪→

↪→

82 self.init_SE = onp.float(self.init_SE)

83 print(f'Initial Strain Energy : {self.init_SE}')

84 self.initial_von_mises =

self.problem.compute_von_mises_stress(self.solution)↪→

85 self.state_tensor_DQN, self.state_tensor_check =

self.jax_model.create_state_space_tensor(self.rho_vector,

self.initial_von_mises, self.bounded_cells,

self.loaded_cells)

↪→

↪→

↪→

86

87 print(f'Check the tensor : {self.state_tensor_check}')

88 # List with the cells that we have already removed

89 self.removed_cells = []

90

91 self.current_state_tensor_DQN, self.current_state_tensor_check =

self.state_tensor_DQN, self.state_tensor_check↪→

92

93 self.nb_removed_cells = 0

94 self._coloring()

95

96 observation = self._get_obs()

97 info = self._get_info()

98

A PROJECT CODE 51

99 self.special_print(0)

100 return self.current_state_tensor_DQN

101

102

103 def step(self, action):

104

105 ## Action reperesents the cell number to remove from topology

106 cell_to_be_removed = action

107 reward = 0

108 self.next_state_tensor_DQN = None

109 if self.jax_model.check_illegal(self.rho_matrix,

cell_to_be_removed, self.current_state_tensor_check,

self.nb_removed_cells, self.max_num_step):

↪→

↪→

110 reward = -1

111 terminated = True

112 indices =

onp.argwhere(self.jax_model.cell_inds_matrix==cell_to_be_removed)↪→

113 index_x, index_y = indices[0][0], indices[0][1]

114 self._remove_cell_color(index_x, index_y)

115 self.special_print(f"{self.nb_removed_cells + 1} -->

illegal")↪→

116 else:

117 terminated = False

118 if self.nb_removed_cells > 1:

119 self.current_state_tensor = self.next_state_tensor_DQN

120

121 self.nb_removed_cells += 1

122 rho_vector, rho_matrix =

self.jax_model.update_density(self.rho_vector,

cell_to_be_removed)

↪→

↪→

123 self.rho1d = rho_vector.reshape((-1,1))

124 solution = self.jax_model.problem_solve(self.problem,

rho_vector)↪→

125 von_mises = self.problem.compute_von_mises_stress(solution)

126

127 self.curr_SE = 0

128 for elem_nb in range(self.size_x * self.size_y):

129 elem_node_1 = int(elem_nb + elem_nb/self.size_x)

130 elem_nodes = [elem_node_1, elem_node_1 + 1, elem_node_1 +

self.size_x+1, elem_node_1 + self.size_x]↪→

131 self.curr_SE +=

(solution[elem_nodes,:].reshape((-1,1)).T) @

solution[elem_nodes,:].reshape((-1,1))

↪→

↪→

132 self.curr_SE = onp.float(self.curr_SE)

133 print()

134 print(f'Current Strain Energy: {self.curr_SE}')

A PROJECT CODE 52

135 print()

136

137 reward = self.jax_model.positive_reward(self.init_SE,

self.curr_SE, self.nb_removed_cells,

self.size_x*self.size_y)

↪→

↪→

138 self.next_state_tensor_DQN, self.next_state_tensor_check=

self.jax_model.create_state_space_tensor(rho_vector,

von_mises, self.bounded_cells, self.loaded_cells)

↪→

↪→

139

140 print(f'Check the current tensor :

{self.next_state_tensor_check}')↪→

141 indices =

onp.argwhere(self.jax_model.cell_inds_matrix==cell_to_be_removed)↪→

142 index_x, index_y = indices[0][0], indices[0][1]

143 self._remove_cell_color(index_x, index_y)

144 self.special_print(self.nb_removed_cells)

145 self.removed_cells.append(cell_to_be_removed)

146

147 return self.current_state_tensor_DQN, action, reward,

self.next_state_tensor_DQN, terminated↪→

148

149

150 def special_print(self, counter):

151 def aux(value: int):

152 if value < 10:

153 return (f"0{value}")

154 else:

155 return (f"{value}")

156 index = -1

157 print(f"Step: {counter}")

158 for i in range(self.size_y):

159 for j in range(self.size_x):

160 index += 1

161 if self._render_image[i][j] == 0:

162 print(Style.BRIGHT + Back.WHITE + Fore.RED +

f"|{aux((self.size_y-i-1) + (self.size_x*j))}|",

end="") # White background

↪→

↪→

163 elif self._render_image[i][j] == 1:

164 print(Style.BRIGHT + Back.BLUE + Fore.RED +

f"|{aux((self.size_y-i-1) + (self.size_x*j))}|",

end="") # Blue background

↪→

↪→

165 elif self._render_image[i][j] == 2:

166 print(Style.BRIGHT + Back.RED + Fore.RED +

f"|{aux((self.size_y-i-1) + (self.size_x*j))}|",

end="") # Red background

↪→

↪→

167 elif self._render_image[i][j] == 3:

A PROJECT CODE 53

168 print(Style.BRIGHT + Back.GREEN + Fore.RED +

f"|{aux((self.size_y-i-1) + (self.size_x*j))}|",

end="") # Green background

↪→

↪→

169 else:

170 print(Style.BRIGHT + Back.MAGENTA + Fore.RED +

f"|{aux((self.size_y-i-1) + (self.size_x*j))}|",

end="") # Magenta background

↪→

↪→

171 print()

172 print()

A.4 Code of optimizer.py

1 from typing import Type

2 import numpy as onp

3

4 import jax

5 import jax.numpy as jnp

6

7 from colorama import init, Fore, Back, Style

8

9 from problem import ProblemSetup

10

11 from env_withgif import TopOptEnv

12 import tensorflow as tf

13 import random

14 import gym

15 import numpy as np

16 from collections import deque

17 from keras.models import Sequential

18 from keras.layers import Dense, Conv2D, Flatten, Layer

19 from keras.optimizers import Adam

20 import os

21

22 from tensorflow.python.ops.numpy_ops import np_config

23 np_config.enable_numpy_behavior()

24

25 # constant decleration for problem setup

26 Nx, Ny = 6, 6

27 Lx, Ly = 6, 6

28 num_bounded_cell = 2

29 num_loaded_cell = 1

30 filled_density = 1.

31 void_density = 1e-4

32 dim = 2

33 vec = 2

A PROJECT CODE 54

34 # design variable initialization

35 num_of_cells = Nx * Ny

36 vf = 1

37 init_rho_vector = vf*onp.ones((num_of_cells, 1))

38 # optimization paramaters decleration

39 num_episodes = 10

40 num_steps = num_of_cells - (num_bounded_cell + num_loaded_cell)

41

42 simulator = ProblemSetup(Nx=Nx, Ny=Ny, Lx=Lx, Ly=Ly,

num_bounded_cell=num_bounded_cell, num_loaded_cell=num_loaded_cell,↪→

43 filled_density=filled_density,

void_density=void_density, dim=dim, vec=vec)↪→

44

45

46 env = TopOptEnv(size_x=Nx, size_y=Ny, render_mode="human",

jax_model=simulator)↪→

47 init(autoreset=True)

48

49 state_size = (6,6,3)

50 action_size = 36

51 batch_size = 128

52 output_dir = 'model_output/'

53 if not os.path.exists(output_dir):

54 os.makedirs(output_dir)

55

56 avg_q_values = []

57 class StateTransformationLayer(Layer):

58 def __init__(self):

59 super().__init__()

60

61 def call(self, inputs):

62 inputs = tf.array(inputs[-1, :, :, -1])

63 return tf.reshape(tf.rot90(inputs, k=1, axes=(1, 0)), (-1))

64

65 class _build_model(tf.keras.Model):

66

67 def __init__(self):

68 super().__init__()

69 self.conv = Sequential()

70 self.conv.add(Conv2D(16,(3,3),padding='same' ,activation='relu',

input_shape=state_size))↪→

71 self.conv.add(Conv2D(8,(3,3),padding='same',activation='relu'))

72 self.conv.add(Conv2D(4,(3,3),padding='same',activation='relu'))

73 self.conv.add(Conv2D(1,(3,3),padding='same', activation='relu'))

74

75 def call(self, x):

A PROJECT CODE 55

76 x = self.conv(x)

77 x = x[:,::-1,:,:].reshape((x.shape[0], -1), order='F')

78 return x

79

80 class DQNAgent:

81 def __init__(self, state_size, action_size, env:TopOptEnv,

load_=False):↪→

82 self.state_size = state_size

83 self.action_size = action_size

84 self.memory = deque(maxlen=30000)

85 self.gamma = 0.1

86

87 self.epsilon_decay = 3.5e-4

88 self.epsilon_min = 0.01

89 self.learning_rate = 2.5e-3

90 self.e_start = 0

91 self.epsilon = 0.9

92

93 self.model = _build_model()

94 self.model_target = _build_model()

95

96 if load_:

97 self.model.built = True

98 # Specify which model to load here

99 self.load(output_dir+'weights_2200.hdf5')

100 print(f'Model Succesfully Loaded')

101

102 self.model.compile(loss='mean_squared_error',

optimizer=Adam(lr=self.learning_rate))↪→

103 self.model_target.compile(loss='mean_squared_error',

optimizer=Adam(lr=self.learning_rate))↪→

104

105 self.registering_memory_step = 0

106 self.env = env

107

108

109

110 def remember(self, state, action, reward, next_state, done):

111 self.registering_memory_step += 1

112 self.memory.append((state, action, reward, next_state, done))

113

114 def train(self, batch_size, episode_num):

115

116 if len(self.memory) < batch_size:

117 return

118

A PROJECT CODE 56

119 minibatch = random.sample(self.memory, batch_size)

120

121 state_shape = (batch_size, self.state_size[0],

self.state_size[1], self.state_size[2])↪→

122 states = np.zeros(state_shape)

123 states_nxt = np.zeros(state_shape)

124 actions, rewards, dones = [],[],[]

125

126 for i in range(batch_size):

127 states[i] = minibatch[i][0]

128 states_nxt[i] = minibatch[i][3]

129 actions.append(minibatch[i][1])

130 rewards.append(minibatch[i][2])

131 dones.append(minibatch[i][4])

132

133

134 targets = onp.array(self.model(states))

135 targets_nxt = self.model(states_nxt)

136

137 targets_val = self.model_target(states_nxt)

138

139 for i in range(batch_size):

140 if dones[i]:

141 targets[i][actions[i]] = rewards[i]

142 else:

143 a_max = np.argmax(targets_nxt[i])

144 targets[i][actions[i]] = rewards[i] + self.gamma *

targets_val[i][a_max]↪→

145

146 self.model.fit(states, targets, epochs=1)

147

148 self.new_eps = 1 - episode_num * self.epsilon_decay

149

150 if self.new_eps > self.epsilon_min:

151 self.epsilon = self.new_eps

152 else:

153 self.epsilon = self.epsilon_min

154

155

156 def act(self, state, DQN_q_vals):

157 # Filtering the action_space s.t. we only randomize from legal

actions↪→

158 new_action_space = range(36)

159 new_action_space = [ele for ele in new_action_space if ele not in

self.env.bounded_cells]↪→

A PROJECT CODE 57

160 new_action_space = [ele for ele in new_action_space if ele not in

self.env.loaded_cells]↪→

161 if onp.random.rand() <=0.4:

162 new_action_space = [ele for ele in new_action_space if ele

not in self.env.removed_cells]↪→

163 if onp.random.rand() <= self.epsilon:

164 print(f"\n############## RANDOM ACTION ##############")

165 return random.choice(new_action_space), DQN_q_vals

166 print(f"\n############## DQN ACTION ##############")

167

168 state_inp = onp.array(state[onp.newaxis, :, :, :])

169 act_values = self.model(state_inp)

170

171 new_act_values= onp.array(act_values).squeeze(0)

172 print(f'New act Values : {new_act_values}')

173

174 DQN_q_vals.append(onp.argmax(new_act_values))

175

176 return onp.argmax(new_act_values), DQN_q_vals

177

178 def save(self, name):

179 self.model.save_weights(name)

180

181 def load(self, name):

182 self.model.load_weights(name)

183

184 load_ = False

185 agent = DQNAgent(state_size, action_size, env, load_=load_)

186

187 n_episodes = 5000

188 DQN_avg_q_vals = []

189

190 for e in range(agent.e_start, n_episodes):

191 state = env.reset()

192 done = False

193 time = 0

194 DQN_q_vals = []

195 while not done:

196 action, DQN_q_vals = agent.act(state, DQN_q_vals)

197 state, action, reward, next_state, done = env.step(action, e)

198

199 agent.remember(state, action, reward, next_state, done)

200 state = next_state

201 print(f'REWARD : {reward}')

202 if done:

A PROJECT CODE 58

203 print("episode: {}/{}, score: {}, eps: {:.2}".format(e,

n_episodes-1, reward, agent.epsilon))↪→

204

DQN_avg_q_vals.append(onp.sum(onp.array(DQN_q_vals))/len(DQN_q_vals))↪→

205 time += 1

206 # Save q vals in csv for easy reading and plotting

207 data = onp.asarray(DQN_avg_q_vals)

208 onp.savetxt('Avg_q_vals_per_episode.csv', data, delimiter=',')

209

210 agent.train(batch_size, e)

211

212 if e % 100 ==0 and e>1:

213 agent.model_target.set_weights(agent.model.get_weights())

214

215 if e % 50 == 0 or e == n_episodes-1:

216 print(f"\nLen of memory = {len(agent.memory)}")

217 if load_:

218 output_dir = 'model_output_loaded/'

219 if not os.path.exists(output_dir):

220 os.makedirs(output_dir)

221 agent.save(output_dir + "weights_" + '{:04d}'.format(e) +

".hdf5")↪→

222

223

A.5 Illustration of an entire training episode

A PROJECT CODE 59

Figure 13: Training episode 2245

	Abstract
	Introduction
	Problem definition and goals of the project
	State of the art approaches and algorithms in TO

	Structure of the paper
	Background
	Reinforcement Learning
	Intuitive explanation
	Q-Learning

	Finite Element Method
	Topology Optimisation
	Methods of Moving Asymptotes (MMA)

	Methods
	Related Work
	FEM Framework
	JAX-FEM

	RL Framework
	State space
	Action space
	Reward
	Training
	Testing
	DL Architecture

	Implementation
	fem_model.py
	problem.py
	env.py
	optimizer.py
	MMA implementation

	Evaluation
	Results
	Qualitative assessment
	Quantitative Assessment

	Conclusion
	Future Work
	Project Code
	Code of problem.py
	Code of fem_model.py
	Code of env.py
	Code of optimizer.py
	Illustration of an entire training episode

